437 research outputs found
Sulfated glycans engage the Ang–Tie pathway to regulate vascular development
The angiopoietin (Ang)–Tie pathway is essential for the proper maturation and remodeling of the vasculature. Despite its importance in disease, the mechanisms that control signal transduction through this pathway are poorly understood. Here, we demonstrate that heparan sulfate glycosaminoglycans (HS GAGs) regulate Ang–Tie signaling through direct interactions with both Ang ligands and Tie1 receptors. HS GAGs formed ternary complexes with Ang1 or Ang4 and Tie2 receptors, resulting in potentiation of endothelial survival signaling. In addition, HS GAGs served as ligands for the orphan receptor Tie1. The HS–Tie1 interaction promoted Tie1–Tie2 heterodimerization and enhanced Tie1 stability within the mature vasculature. Loss of HS–Tie1 binding using CRISPR–Cas9-mediated mutagenesis in vivo led to decreased Tie protein levels, pathway suppression and aberrant retinal vascularization. Together, these results reveal that sulfated glycans use dual mechanisms to regulate Ang–Tie signaling and are important for the development and maintenance of the vasculature
Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides
All-optical signal processing is envisioned as an approach to dramatically
decrease power consumption and speed up performance of next-generation optical
telecommunications networks. Nonlinear optical effects, such as four-wave
mixing (FWM) and parametric gain, have long been explored to realize
all-optical functions in glass fibers. An alternative approach is to employ
nanoscale engineering of silicon waveguides to enhance the optical
nonlinearities by up to five orders of magnitude, enabling integrated
chip-scale all-optical signal processing. Previously, strong two-photon
absorption (TPA) of the telecom-band pump has been a fundamental and
unavoidable obstacle, limiting parametric gain to values on the order of a few
dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier
exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near
one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic
TPA-related absorption vanishes. This gain is high enough to compensate all
insertion losses, resulting in 13 dB net off-chip amplification. Furthermore,
dispersion engineering dramatically increases the gain bandwidth to more than
220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its
significant relevance to all-optical signal processing, the broadband
parametric gain also facilitates the simultaneous generation of multiple
on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range.
Together, these results provide a foundation for the construction of
silicon-based room-temperature mid-IR light sources including tunable
chip-scale parametric oscillators, optical frequency combs, and supercontinuum
generators
The Pan-STARRS Moving Object Processing System
We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern
software package that produces automatic asteroid discoveries and
identifications from catalogs of transient detections from next-generation
astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing
orbits from a synthetic but realistic population of asteroids whose
measurements were simulated for a Pan-STARRS4-class telescope. Additionally,
using a non-physical grid population, we demonstrate that MOPS can detect
populations of currently unknown objects such as interstellar asteroids.
MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope
despite differences in expected false detection rates, fill-factor loss and
relatively sparse observing cadence compared to a hypothetical Pan-STARRS4
telescope and survey. MOPS remains >99.5% efficient at detecting objects on a
single night but drops to 80% efficiency at producing orbits for objects
detected on multiple nights. This loss is primarily due to configurable MOPS
processing limits that are not yet tuned for the Pan-STARRS1 mission.
The core MOPS software package is the product of more than 15 person-years of
software development and incorporates countless additional years of effort in
third-party software to perform lower-level functions such as spatial searching
or orbit determination. We describe the high-level design of MOPS and essential
subcomponents, the suitability of MOPS for other survey programs, and suggest a
road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table
- …