53 research outputs found

    Effects of natto extract on endothelial injury in a rat model

    Get PDF
    Vascular endothelial damage has been found to be associated with thrombus formation, which is considered to be a risk factor for cardiovascular disease. A diet of natto leads to a low prevalence of cardiovascular disease. The aim of the present study was to investigate the effects of natto extract on vascular endothelia damage with exposure to laser irradiation. Endothelial damage both in vitro and in vivo was induced by irradiation of rose bengal using a DPSS green laser. Cell viability was determined by MTS assay, and the intimal thickening was verified by a histological approach. The antioxidant content of natto extract was determined for the free radical scavenging activity. Endothelial cells were injured in the presence of rose bengal irradiated in a dose-dependent manner. Natto extract exhibits high levels of antioxidant activity compared with purified natto kinase. Apoptosis of laser-injured endothelial cells was significantly reduced in the presence of natto extract. Both the natto extract and natto kinase suppressed intimal thickening in rats with endothelial injury. The present findings suggest that natto extract suppresses vessel thickening as a synergic effect attributed to its antioxidant and anti-apoptosis properties

    Hispolon Protects against Acute Liver Damage in the Rat by Inhibiting Lipid Peroxidation, Proinflammatory Cytokine, and Oxidative Stress and Downregulating the Expressions of iNOS, COX-2, and MMP-9

    Get PDF
    The hepatoprotective potential of hispolon against carbon tetrachloride (CCl4)-induced liver damage was evaluated in preventive models in rats. Male rats were intraperitoneally treated with hispolon or silymarin once daily for 7 consecutive days. One hour after the final hispolon or silymarin treatment, the rats were injected with CCl4. Administration with hispolon or silymarin significantly decreased the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum and increased the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH) content and decreased the malondialdehyde (MDA) content in liver compared with CCl4-treated group. Liver histopathology also showed that hispolon reduced the incidence of liver lesions induced by CCl4. In addition, hispolon decreased nitric oxide (NO) production and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) activation in CCl4-treated rats. We also examined the involvement of matrix metalloproteinase (MMP)-9 in the development of CCl4-induced liver damage in rats. Hispolon inhibited the expression of MMP-9 protein, indicating that MMP-9 played an important role in the development of CCl4-induced rat liver damage. Therefore, we speculate that hispolon protects rats from liver damage through their prophylactic redox balancing ability and anti-inflammation capacity

    Prognostic Implications of Epidermal Growth Factor Receptor and KRAS Gene Mutations and Epidermal Growth Factor Receptor Gene Copy Numbers in Patients with Surgically Resectable Non-small Cell Lung Cancer in Taiwan

    Get PDF
    IntroductionThe prognostic role of epidermal growth factor receptor (EGFR) mutations in patients with surgically resectable non-small cell lung cancer (NSCLC) without EGFR tyrosine kinase inhibitor treatment has not been well established, because the reports are still few.Materials and MethodsWe analyzed the survival data of 164 patients with surgically resectable (stages I to IIIA) NSCLC of two year groups (1996–1998 and 2002–2004), and compared with EGFR mutations, KRAS mutations, and EGFR gene copy numbers.ResultsComparing the survival of wild-type patients and patients having L858R mutations or exon 19 deletion, the median survival was much longer for patient with EGFR mutations (54.7 months) than wild type (34.9 months). The difference was not statistically significant by univariate analysis (p = 0.1981) but had borderline significance by multivariate analyses (p = 0.0506). In addition, the 3-year survival rates of patients with EGFR mutations were also significantly higher than wild type (p = 0.0232). After exclusion of 18 patients treated by EGFR-tyrosine kinase inhibitor for tumor recurrence, the trends were still the same. Patients with KRAS mutations had shorter median survival (21 months) than wild type (44.4 months). Patients with EGFR polysomy (≧copies) also had longer median survival (56.2 months) than wild type (53.4 months). But the survival differences of these two genetic markers were all not significant statistically.ConclusionIt is intriguing that patients with NSCLC with EGFR mutations had better survival than wild type. Such a tumor biology may confound the survival data in a study without the stratification by EGFR mutation

    Sesamin: A Naturally Occurring Lignan Inhibits CYP3A4 by Antagonizing the Pregnane X Receptor Activation

    Get PDF
    Inconsistent expression and regulation of drug-metabolizing enzymes (DMEs) are common causes of adverse drug effects in some drugs with a narrow therapeutic index (TI). An important cytochrome, cytochrome P450 3A4 (CYP3A4), is predominantly regulated by a nuclear receptor, pregnane X receptor (PXR). Sesamin, a major lignan constituent in sesame seeds and oil, exhibits a variety of biological functions; however, the effect of sesamin on the modulation of CYP3A4 is not well understood. In this study, the effects of sesamin on the PXR-CYP3A4 pathway were characterized, as well as the underlying mechanisms of those effects. Sesamin potently attenuated CYP3A4 induction in a dose-dependent manner by blocking the activation of PXR. The PXR inducer-mediated inhibition of CYP3A4 was further evidenced by the ability of sesamin to attenuate the effects of several PXR ligands in the CYP3A4 reporter assay. Further mechanistic studies showed that sesamin inhibited PXR by interrupting the interacting with coregulators. These results may lead to the development of new therapeutic and dietary approaches to reduce the frequency of inducer-drug interaction. Sesamin was established as a novel inhibitor of PXR and may be useful for modulating DMEs expression and drug efficacies. Modification of CYP3A4 expression and activity by consumption of sesamin may have important implications for drug safety

    Clinical Implications of High MET Gene Dosage in Non-Small Cell Lung Cancer Patients without Previous Tyrosine Kinase Inhibitor Treatment

    Get PDF
    Introduction:Recently, two studies revealed that MET amplification was associated with secondary epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC) patients. But it remains uncertain whether MET amplification could be related to primary TKI resistance in NSCLC because of limited data.Materials and Methods:MET gene dosage of the tumor tissues from 208 NSCLC patients was investigated by real time quantitative polymerase chain reaction and compared with molecular and clinical features, including EGFR mutations, KRAS mutations, EGFR gene copy numbers, and patient survivals. Three copies were used as the cutoff. Among them, 25 patients were also evaluable for EGFR TKI responsiveness.Results:The proportion of high MET gene dosage was 10.58% (22/208) with higher incidence in squamous cell carcinoma (11.86%) and smokers (16.18%), although the differences with adenocarcinoma and nonsmokers were nonsignificant. Coexisting EGFR mutations were identified, and the incidence (8.54%) was similar to wild type (12.0%). High MET gene dosage was significantly associated with higher tumor stage (stage I + II versus stage III + IV; p = 0.0254) and prior chemotherapy for stage III + IV adenocarcinoma patients (35.71% versus 7.41%; p = 0.0145) but not correlated with primary TKI resistance. Among the 155 surgically resectable patients (stage I to IIIA), high MET gene dosage was significantly associated with shorter median survival (21.0 months versus 47.1 months; p = 0.042) by univariate analysis.Conclusions:High MET gene dosage was not related to primary TKI resistance and the incidence was increased after chemotherapy, suggesting high MET gene dosage may also be related to chemotherapy resistance

    Paraoxonase-1 Is Not a Major Determinant of Stent Thrombosis in a Taiwanese Population

    Get PDF
    BACKGROUND: Clopidogrel is a prodrug that undergoes in vivo bioactivation to show its antiplatelet effects. Recent studies have shown that cytochrome P450 (CYP), ATP-binding cassette transporters (ABCB1), and paraoxonase-1 (PON1) play crucial roles in clopidogrel bioactivation. Here, we aim to determine the effects of genetic polymorphisms of CYP (CYP 2C19*2, CYP 2C19*3, and CYP 2C19*17), ABCB1 (ABCB1 3435C>T, ABCB1 129T>C, and ABCB1 2677G>T/A), and PON1 (PON1 Q192R, PON1 L55M, and PON1 108C>T) on the development of stent thrombosis (ST) in patients receiving clopidogrel after percutaneous coronary intervention (PCI). METHODS AND RESULTS: We evaluated the incidence of ST (0.64%) in 4964 patients who were recruited in the CAPTAIN registry (Cardiovascular Atherosclerosis and Percutaneous TrAnsluminal INterventions). The presence of genetic polymorphisms was assessed in 20 subjects who developed ST after aspirin and clopidogrel therapy and in 40 age- and sex-matched control subjects who did not develop ST, which was documented after 9 months of angiographic follow-up. ST was acute in 5 subjects, subacute in 7, late in 7, and very late in 1. The presence of CYP 2C19*2 allele was significantly associated with ST (adjusted odds ratio [ORadj]: 4.20, 95% confidence interval [CI], 1.263-9.544; P = 0.031). However, genetic variations in PON1 and ABCB1 showed no significant association with ST. CONCLUSION: We conclude that in a Taiwanese population, PON1 Q192R genotype is not associated with ST development after PCI. However, the presence of CYP 2C19*2 allele is a risk factor for ST development after PCI

    Treatment of Stress Urinary Incontinence by Cinnamaldehyde, the Major Constituent of the Chinese Medicinal Herb Ramulus Cinnamomi

    No full text
    Stress urinary incontinence (SUI) is a common disorder in middle-aged women and the elderly population. Although surgical treatment of SUI has progressed, pharmacological therapies remain unelucidated. We screened potential herbal medicines against SUI with an ex vivo organ bath assay. Ramulus Cinnamomi and its major constituent cinnamaldehyde cause a high contractile force of the urethra and a low contractile force of blood vessels. Cinnamaldehyde dose-dependently reduced lipopolysaccharide-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. In the vaginal distension- (VD-) induced SUI model in mice, cinnamaldehyde significantly reversed the VD-induced SUI physical signs and reduced blood pressure. Cinnamaldehyde may offer therapeutic potential against SUI without the possible side effect of hypertension. The modulation of several SUI-related proteins including myosin, iNOS, survival motor neuron (SMN) protein, and superoxide dismutase 3 (SOD3) may play some crucial roles in the therapeutic approach against SUI. This information may offer clues to the pathogenesis of SUI and open additional avenues for potential therapy strategies
    corecore