205 research outputs found

    Transformer-based Summarization and Sentiment Analysis of SEC 10-K Annual Reports for Company Performance Prediction

    Get PDF
    Annual reports published by companies contain important insights regarding their performance and are often analyzed in a manual, subjective manner. We address this point by combining the streams of research on text summarization and topic modelling with the one on sentiment analysis. Our approach consists of the steps of text summarization using BERTSUMEXT, topic modelling with LDA, sentiment analysis with FinBERT, and performance prediction with Decision Trees and Random Forest. The result provides decision makers with an interpretable and condensed representation of the content of annual reports, together with its relationship to future company performance. We evaluate our approach on 10-K reports, demonstrating both its interpretability for analysts and explanatory power regarding future company performance

    Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT

    Get PDF
    Green algae are able to convert solar energy to H2 via the photosynthetic electron transport pathway under certain conditions. Algal hydrogenase (HydA, encoded by HYDA) is in charge of catalyzing the reaction: 2H+ + 2e− ↔ H2 but usually inhibited by O2, a byproduct of photosynthesis. The aim of this study was to knockdown PsbO (encoded by psbO), a subunit concerned with O2 evolution, so that it would lead to HydA induction. The alga, Chlorella sp. DT, was then transformed with short interference RNA antisense-psbO (siRNA-psbO) fragments. The algal mutants were selected by checking for the existence of siRNA-psbO fragments in their genomes and the low amount of PsbO proteins. The HYDA transcription and the HydA expression were observed in the PsbO-knockdown mutants. Under semi-aerobic condition, PsbO-knockdown mutants could photobiologically produce H2 which increased by as much as 10-fold in comparison to the wild type

    An in situ study on the coalescence of monolayer-protected Au-Ag nanoparticle deposits upon heating

    Get PDF
    The structural evolution of thiolate-protected nanoparticles of gold, silver, and their alloys with various Au/Ag ratios (3:1, 1:1, and 1:3) upon heating was investigated by means of in situ synchrotron radiation X-ray diffraction. The relationships between the coalescence and composition of nanoparticles, as well as the surfactant reactions, were clarified. Experimental results show that there existed a critical temperature ranging from 120°C to 164°C, above which the tiny broad X-ray diffraction peaks became sharp and strong due to particle coalescence. The coalescence temperatures for alloy nanoparticle deposits were clearly lower than those for pure metals, which can be ascribed to the rivalry between the thermodynamic effect due to alloying and the interactions between surface-assembled layers and the surface atoms of the nanoparticles. The strong affinity of thiolates to Ag and thus complex interactions give rise to a greater energy barrier for the coalescence of nanoparticles into the bulk and subsequent high coalescence temperature. The influences of particle coalescence on the optical and electrical properties of the nanoparticle deposits were also explored

    Sodium vanadate combined with l-ascorbic acid delays disease progression, enhances motor performance, and ameliorates muscle atrophy and weakness in mice with spinal muscular atrophy

    Get PDF
    BACKGROUND: Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model. METHODS: Sodium vanadate (200 ÎŒM), L-ascorbic acid (400 ÎŒM), or sodium vanadate combined with L-ascorbic acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies, and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and Student's t test for paired variables were used to measure significant differences (P < 0.05) between values. RESULTS: Combined treatment protected cells against vanadate-induced cell death with decreasing B cell lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially decreased vanadium accumulation in these organs. CONCLUSIONS: Combined treatment beginning at birth and continuing for 1 month conferred protection against neuromuscular damage in mice with milder types of SMA. Further, these mice exhibited enhanced motor performance in adulthood. Therefore, combined treatment could present a feasible treatment option for patients with late-onset SMA

    Cbl negatively regulates nlrp3 inflammasome activation through glut1-dependent glycolysis inhibition

    Get PDF
    Activation of the nod-like receptor 3 (NLRP3) inflammasomes is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Cbl plays a pivotal role in suppressing NLRP3 inflammasome activation by inhibiting Pyk2-mediated apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. Here, we showed that Cbl dampened NLRP3 inflammasome activation by inhibiting glycolysis, as demonstrated with Cbl knockout cells and treatment with the Cbl inhibitor hydrocotarnine. We revealed that the inhibition of Cbl promoted caspase-1 cleavage and interleukin (IL)-1ÎČ secretion through a glycolysis-dependent mechanism. Inhibiting Cbl increased cellular glucose uptake, glycolytic capacity, and mitochondrial oxidative phosphorylation capacity. Upon NLRP3 inflammasome activation, inhibiting Cbl increased glycolysis-dependent activation of mitochondrial respiration and increased the production of reactive oxygen species, which contributes to NLRP3 inflammasome activation and IL-1ÎČ secretion. Mechanistically, inhibiting Cbl increased surface expression of glucose transporter 1 (GLUT1) protein through post-transcriptional regulation, which increased cellular glucose uptake and consequently raised glycolytic capacity, and in turn enhanced NLRP3 inflammasome activation. Together, our findings provide new insights into the role of Cbl in NLRP3 inflammasome regulation through GLUT1 downregulation. We also show that a novel Cbl inhibitor, hydrocortanine, increased NLRP3 inflammasome activity via its effect on glycolysis

    The Tiehchanshan structure of NW Taiwan: A potential geological reservoir for CO2 sequestration

    Full text link
    The Tiehchanshan structure is the largest gas-field in the outer foothills of northwestern Taiwan and has been regarded as the best site for CO2 sequestration. This study used a grid of seismic sections and wellbore data to establish a new 3-D geometry of subsurface structure, which was combined with lithofacies characters of the target reservoir rock, the Yutengping Sandstone, to build a geological model for CO2 sequestration. On the surface, the Tiehchanshan structure is characterized by two segmented anticlines offset by a tear fault. The subsurface geometry of the Tiehchanshan structure is, however, composed of two thrust-related anticlines with opposite vergence and laterally increasing fold symmetry toward each other. The folds are softly linked via the transfer zone in the subsurface, implying that the suspected tear fault in the surface transfer zone may not exist in the subsurface. The Yutengping Sandstone is composed of several sandstone units characterized by coarsening-upward cycles. The sandstone member can be further divided into four well-defined sandstone layers, separated by laterally continuous shale layers. In view of the structural and stratigraphic characteristics, the optimum area for CO2 injection and storage is in the structurally high in the northern part of the Tiehchanshan structure. The integrity of the closure and the overlying seal are not disrupted by the pre-orogenic high-angle faults. On the other hand, a thick continuous shale layer within the Yutengping Sandstone isolates the topmost sandy layer from the underlying ones and gives another important factor to the CO2 injection simulation

    Extracorporeal membrane oxygenation for neonatal congenital diaphragmatic hernia: The initial single-center experience in Taiwan

    Get PDF
    Background/Purpose Extracorporeal membrane oxygenation (ECMO) is a treatment option for stabilizing neonates with congenital diaphragmatic hernia (CDH) in a critical condition when standard therapy fails. However, the use of this approach in Taiwan has not been previously reported. Methods The charts of all neonates with CDH treated in our institute during the period 2007–2014 were reviewed. After 2010, patients who could not be stabilized with conventional treatment were candidates for ECMO. We compared the demographic data of patients with and without ECMO support. The clinical course and complications of ECMO were also reviewed. Results We identified 39 neonates with CDH with a median birth weight of 2696 g (range, 1526–3280 g). Seven (18%) of these patients required ECMO support. The APGAR score at 5 minutes differed significantly between the ECMO and non-ECMO groups. The survival rate was 84.6% (33/39) for all CDH patients and 57.1% (4/7) for the ECMO group. The total ECMO bypass times in the survivors was in the range of 5–36 days, whereas all nonsurvivors received ECMO for at least 36 days (mean duration, 68 days). Surgical bleeding occurred in four of seven patients in the ECMO group. Conclusion The introduction of ECMO rescued some CDH patients who could not have survived by conventional management. Prolonged (i.e., > 36 days) ECMO support had no benefit for survival

    Prognostic Implications of Epidermal Growth Factor Receptor and KRAS Gene Mutations and Epidermal Growth Factor Receptor Gene Copy Numbers in Patients with Surgically Resectable Non-small Cell Lung Cancer in Taiwan

    Get PDF
    IntroductionThe prognostic role of epidermal growth factor receptor (EGFR) mutations in patients with surgically resectable non-small cell lung cancer (NSCLC) without EGFR tyrosine kinase inhibitor treatment has not been well established, because the reports are still few.Materials and MethodsWe analyzed the survival data of 164 patients with surgically resectable (stages I to IIIA) NSCLC of two year groups (1996–1998 and 2002–2004), and compared with EGFR mutations, KRAS mutations, and EGFR gene copy numbers.ResultsComparing the survival of wild-type patients and patients having L858R mutations or exon 19 deletion, the median survival was much longer for patient with EGFR mutations (54.7 months) than wild type (34.9 months). The difference was not statistically significant by univariate analysis (p = 0.1981) but had borderline significance by multivariate analyses (p = 0.0506). In addition, the 3-year survival rates of patients with EGFR mutations were also significantly higher than wild type (p = 0.0232). After exclusion of 18 patients treated by EGFR-tyrosine kinase inhibitor for tumor recurrence, the trends were still the same. Patients with KRAS mutations had shorter median survival (21 months) than wild type (44.4 months). Patients with EGFR polysomy (≧copies) also had longer median survival (56.2 months) than wild type (53.4 months). But the survival differences of these two genetic markers were all not significant statistically.ConclusionIt is intriguing that patients with NSCLC with EGFR mutations had better survival than wild type. Such a tumor biology may confound the survival data in a study without the stratification by EGFR mutation
    • 

    corecore