6,980 research outputs found
Correlation between dielectric constant and chemical structure of sodium silicate glasses
Journal URL: http://jap.aip.org/jap/staff.js
The quantum dynamic capacity formula of a quantum channel
The dynamic capacity theorem characterizes the reliable communication rates
of a quantum channel when combined with the noiseless resources of classical
communication, quantum communication, and entanglement. In prior work, we
proved the converse part of this theorem by making contact with many previous
results in the quantum Shannon theory literature. In this work, we prove the
theorem with an "ab initio" approach, using only the most basic tools in the
quantum information theorist's toolkit: the Alicki-Fannes' inequality, the
chain rule for quantum mutual information, elementary properties of quantum
entropy, and the quantum data processing inequality. The result is a simplified
proof of the theorem that should be more accessible to those unfamiliar with
the quantum Shannon theory literature. We also demonstrate that the "quantum
dynamic capacity formula" characterizes the Pareto optimal trade-off surface
for the full dynamic capacity region. Additivity of this formula simplifies the
computation of the trade-off surface, and we prove that its additivity holds
for the quantum Hadamard channels and the quantum erasure channel. We then
determine exact expressions for and plot the dynamic capacity region of the
quantum dephasing channel, an example from the Hadamard class, and the quantum
erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections;
v3 has correction regarding the optimizatio
Controlling orbital moment and spin orientation in CoO layers by strain
We have observed that CoO films grown on different substrates show dramatic
differences in their magnetic properties. Using polarization dependent x-ray
absorption spectroscopy at the Co L edges, we revealed that the
magnitude and orientation of the magnetic moments strongly depend on the strain
in the films induced by the substrate. We presented a quantitative model to
explain how strain together with the spin-orbit interaction determine the 3d
orbital occupation, the magnetic anisotropy, as well as the spin and orbital
contributions to the magnetic moments. Control over the sign and direction of
the strain may therefore open new opportunities for applications in the field
of exchange bias in multilayered magnetic films
Orbital-assisted metal-insulator transition in VO
We found direct experimental evidence for an orbital switching in the V 3d
states across the metal-insulator transition in VO. We have used
soft-x-ray absorption spectroscopy at the V edges as a sensitive
local probe, and have determined quantitatively the orbital polarizations.
These results strongly suggest that, in going from the metallic to the
insulating state, the orbital occupation changes in a manner that charge
fluctuations and effective band widths are reduced, that the system becomes
more 1-dimensional and more susceptible to a Peierls-like transition, and that
the required massive orbital switching can only be made if the system is close
to a Mott insulating regime
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
Three dimensional topological insulators embody a newly discovered state of
matter characterized by conducting spin-momentum locked surface states that
span the bulk band gap as demonstrated via spin-resolved ARPES measurements .
This highly unusual surface environment provides a rich ground for the
discovery of novel physical phenomena. Here we present the first controlled
study of the topological insulator surfaces under strong Coulomb, magnetic and
disorder perturbations. We have used interaction of iron, with a large Coulomb
state and significant magnetic moment as a probe to \textit{systematically test
the robustness} of the topological surface states of the model topological
insulator BiSe. We observe that strong perturbation leads to the
creation of odd multiples of Dirac fermions and that magnetic interactions
break time reversal symmetry in the presence of band hybridization. We also
present a theoretical model to account for the altered surface of BiSe.
Taken collectively, these results are a critical guide in manipulating
topological surfaces for probing fundamental physics or developing device
applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with
arXiv:1009.621
A note on Zolotarev optimal rational approximation for the overlap Dirac operator
We discuss the salient features of Zolotarev optimal rational approximation
for the inverse square root function, in particular, for its applications in
lattice QCD with overlap Dirac quark. The theoretical error bound for the
matrix-vector multiplication is derived. We check that
the error bound is always satisfied amply, for any QCD gauge configurations we
have tested. An empirical formula for the error bound is determined, together
with its numerical values (by evaluating elliptic functions) listed in Table 2
as well as plotted in Figure 3. Our results suggest that with Zolotarev
approximation to , one can practically preserve the exact
chiral symmetry of the overlap Dirac operator to very high precision, for any
gauge configurations on a finite lattice.Comment: 23 pages, 5 eps figures, v2:minor clarifications, and references
added, to appear in Phys. Rev.
A Universal Intrinsic Scale of Hole Concentration for High-Tc Cuprates
We have measured thermoelectric power (TEP) as a function of hole
concentration per CuO2 layer, Ppl, in Y1-xCaxBa2Cu3O6 (Ppl = x/2) with no
oxygen in the Cu-O chain layer. The room-temperature TEP as a function of Ppl,
S290(Ppl), of Y1-xCaxBa2Cu3O6 behaves identically to that of La2-zSrzCuO4 (Ppl
= z). We argue that S290(Ppl) represents a measure of the intrinsic equilibrium
electronic states of doped holes and, therefore, can be used as a common scale
for the carrier concentrations of layered cuprates. We shows that the Ppl
determined by this new universal scale is consistent with both hole
concentration microscopically determined by NQR and the hole concentration
macroscopically determined by the Cu valency. We find two characteristic
scaling temperatures, TS* and TS2*, in the TEP vs. temperature curves that
change systematically with doping. Based on the universal scale, we uncover a
universal phase diagram in which almost all the experimentally determined
pseudogap temperatures as a function of Ppl fall on two common curves; upper
pseudogap temperature defined by the TS* versus Ppl curve and lower pseudogap
temperature defined by the TS2* versus Ppl curve. We find that while pseudogaps
are intrinsic properties of doped holes of a single CuO2 layer for all high-Tc
cuprates, Tc depends on the number of layers, therefore the inter-layer
coupling, in each individual system.Comment: 11 pages, 9 figures, accepted for publication in Physical Review
Determination of the orbital moment and crystal field splitting in LaTiO
Utilizing a sum-rule in a spin-resolved photoelectron spectroscopic
experiment with circularly polarized light, we show that the orbital moment in
LaTiO is strongly reduced both below and above the N\'{e}el temperature.
Using Ti x-ray absorption spectroscopy as a local probe, we found
that the crystal field splitting in the subshell is about 0.12-0.30
eV. This large splitting does not facilitate the formation of an orbital
liquid
- …