7,887 research outputs found

    THE EFFECT OF RURAL ZONING ON THE ALLOCATION OF LAND USE IN OHIO

    Get PDF
    By incorporating the spatially arrangement of counties relative to each other, this paper uses a land use share model to investigate the possibility that the allocation of land use in one county could be influenced by not only the degree to which the county is zoned, but also the degree to which neighboring counties are zoned due to spillovers of zoning effects among neighboring counties. The estimation uses data on land use for 88 counties in Ohio.Land Economics/Use,

    A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2_2Re2_2O7_7

    Get PDF
    Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2_2Re2_2O7_7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2_2Re2_2O7_7 and induces a parity-breaking lattice distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio

    Non-linear complex principal component analysis of nearshore bathymetry

    No full text
    International audienceComplex principal component analysis (CPCA) is a useful linear method for dimensionality reduction of data sets characterized by propagating patterns, where the CPCA modes are linear functions of the complex principal component (CPC), consisting of an amplitude and a phase. The use of non-linear methods, such as the neural-network based circular non-linear principal component analysis (NLPCA.cir) and the recently developed non-linear complex principal component analysis (NLCPCA), may provide a more accurate description of data in case the lower-dimensional structure is non-linear. NLPCA.cir extracts non-linear phase information without amplitude variability, while NLCPCA is capable of extracting both. NLCPCA can thus be viewed as a non-linear generalization of CPCA. In this article, NLCPCA is applied to bathymetry data from the sandy barred beaches at Egmond aan Zee (Netherlands), the Hasaki coast (Japan) and Duck (North Carolina, USA) to examine how effective this new method is in comparison to CPCA and NLPCA.cir in representing propagating phenomena. At Duck, the underlying low-dimensional data structure is found to have linear phase and amplitude variability only and, accordingly, CPCA performs as well as NLCPCA. At Egmond, the reduced data structure contains non-linear spatial patterns (asymmetric bar/trough shapes) without much temporal amplitude variability and, consequently, is about equally well modelled by NLCPCA and NLPCA.cir. Finally, at Hasaki, the data structure displays not only non-linear spatial variability but also considerably temporal amplitude variability, and NLCPCA outperforms both CPCA and NLPCA.cir. Because it is difficult to know the structure of data in advance as to which one of the three models should be used, the generalized NLCPCA model can be used in each situation

    Semimetal to semimetal charge density wave transition in 1T-TiSe2_2

    Get PDF
    We report an infrared study on 1TT-TiSe2_2, the parent compound of the newly discovered superconductor Cux_xTiSe2_2. Previous studies of this compound have not conclusively resolved whether it is a semimetal or a semiconductor: information that is important in determining the origin of its unconventional CDW transition. Here we present optical spectroscopy results that clearly reveal that the compound is metallic in both the high-temperature normal phase and the low-temperature CDW phase. The carrier scattering rate is dramatically different in the normal and CDW phases and the carrier density is found to change with temperature. We conclude that the observed properties can be explained within the scenario of an Overhauser-type CDW mechanism.Comment: 4 pages, 4 page

    A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles

    Full text link
    Keeping a basic tenet of economic theory, rational expectations, we model the nonlinear positive feedback between agents in the stock market as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes. We use the formula to invert the two years of price history prior to the recent crash on the Nasdaq (april 2000) and prior to the crash in the Hong Kong market associated with the Asian crisis in early 1994. These complex price dynamics are captured using only one exponent controlling the explosion, the variance and mean of the underlying random walk. This offers a new and powerful detection tool of speculative bubbles and herding behavior.Comment: Latex document of 24 pages including 5 eps figure

    Anomalous metallic state of Cu0.07_{0.07}TiSe2_2: an optical spectroscopy study

    Get PDF
    We report an optical spectroscopy study on the newly discovered superconductor Cu0.07_{0.07}TiSe2_2. Consistent with the development from a semimetal or semiconductor with a very small indirect energy gap upon doping TiSe2_2, it is found that the compound has a low carrier density. Most remarkably, the study reveals a substantial shift of the "screened" plasma edge in reflectance towards high energy with decreasing temperature. This phenomenon, rarely seen in metals, indicates either a sizeable increase of the conducting carrier concentration or/and a decrease of the effective mass of carriers with reducing temperature. We attribute the shift primarily to the later effect.Comment: 4 figures, 4+ page

    Orbitally driven spin-singlet dimerization in SS=1 La4_{4}Ru2_{2}O10_{10}

    Get PDF
    Using x-ray absorption spectroscopy at the Ru-L2,3L_{2,3} edge we reveal that the Ru4+^{4+} ions remain in the SS=1 spin state across the rare 4d-orbital ordering transition and spin-gap formation. We find using local spin density approximation + Hubbard U (LSDA+U) band structure calculations that the crystal fields in the low temperature phase are not strong enough to stabilize the SS=0 state. Instead, we identify a distinct orbital ordering with a significant anisotropy of the antiferromagnetic exchange couplings. We conclude that La4_{4}Ru2_{2}O10_{10} appears to be a novel material in which the orbital physics drives the formation of spin-singlet dimers in a quasi 2-dimensional SS=1 system.Comment: 5 pages, 4 figures, and 1 tabl

    Magnetic moment of the pentaquark Θ+(1540)\Theta^+(1540) with light-cone QCD sum rules

    Full text link
    In this article, we study the magnetic moment of the pentaquark state Θ+(1540) \Theta^+(1540) as diquark-diquark-antiquark ([ud][ud]sˉ[ud][ud]\bar{s}) state in the framework of the light-cone QCD sum rules approach. The numerical results indicate the magnetic moment of the pentaquark state Θ+(1540) \Theta^+(1540) is about μΘ+=(0.49±0.06)μN\mu_{\Theta^+}=-(0.49\pm 0.06)\mu_N.Comment: 10 pages, 1 figure. The main contents of this article is included in hep-ph/0503007, this article will not be submitted to a journal for publicatio
    corecore