175 research outputs found
Dye-Sensitized Solar Cells Using Mesocarbon Microbead-Based Counter Electrodes
The dye-sensitized solar cells (DSCs) equipped with mesocarbon microbead (MCMB)-based counter electrodes were explored to examine their cell performance. Three types of nanosized additives including platinum, carbon nanotubes (CNTs), and carbon black (CB) are well dispersed and coated over microscaled MCMB powders. In the design of the counter electrodes, the MCMB graphite offers an excellent medium that allows charge transfer from the ITO substrate to the dye molecule. The active materials such as Pt, CNT, and nanosize CB act as an active site provider for the redox reaction. Among these counter electrodes, the DSCs fabricated with CB electrode exhibit the highest power conversion efficiency. This improved efficiency can be attributed to the fact that the CB nanoparticles not only offer a large number of catalytic sites but also low charge transfer resistance, facilitating a rapid reaction kinetics. Such design of carbon counter electrode has been confirmed to be a promising candidate for replacing Pt electrodes
Fabrication of Inorganic Coatings Incorporated with Functionalized Graphene Oxide Nanosheets for Improving Fire Retardancy of Wooden Substrates
Flame-retardant chemicals are frequently used within consumer products and can even be employed as a treatment on the surface of different types of materials (e.g., wood, steel, and textiles) to prevent fire or limit the rapid spread of flames. Functionalized graphene oxide (FGO) nanosheets are a promising construction coating nanomaterial that can be blended with sodium metasilicate and gypsum to reduce the flammability of construction buildings. In this work, we designed and fabricated novel and halogen-free FGO sheets using the modified Hummers method; and subsequently functionalized them by pentaerythritol through a chemical impregnation process before dispersing them within the construction coating. Scanning electron microscopic images confirm that the FGO-filled coating was uniformly dispersed on the surface of wooden substrates. We identified that the FGO content is a critical factor affecting the fire retardancy. Thermogravimetric analysis of the FGO coating revealed that higher char residue can be obtained at 700 °C. Based on the differential scanning calorimetry, the exothermic peak contained a temperature delay in the presence of FGO sheets, primarily due to the formation of a thermal barrier. Such a significant improvement in the flame retardancy confirms that the FGO nanosheets are superior nanomaterials to be employed as a flame-retardant construction coating nanomaterial for improving thermal management within buildings
Synthesis of MgCo 2 O 4 -coated Li 4 Ti 5 O 12 composite anodes using co-precipitation method for lithium-ion batteries
Abstract(#br)In the present work, we report synthesis of MgCo 2 O 4 (MCO)/Li 4 Ti 5 O 12 (LTO) composites for Li-ion battery anodes by a co-precipitation method. The objective of this work is to replace expensive Co with Mg and also to exploit advantages of both MCO and LTO. Three samples of MCO/LTO particles with different MCO proportion have various average particle sizes of 38.1, 56.9, and 58.5 nm, confirmed by scanning electron microscopy. Electrochemical studies show that a MCO/LTO anode offers a discharge capacity of ca. 300 mAh g −1 , which is two times higher than that achieved by pristine LTO. The MCO/LTO anode also retains 75% of its initial capacity, even if the discharge rate is increased to 5 C. Cyclic stability test reveals that the composite anode still maintains nearly..
Thermal transport on composite thin films using graphene nanodots and polymeric binder
Abstract(#br)Series of composite thin films consisted of graphene nanodots (GNDs) and water-based binder (i.e., polyvinylpyrrolidone and polyvinyl alcohol) are designed and fabricated for nano-engineering devices with enhanced thermal and electrical conductivities. A thermal pyrolysis of citric acid and urea is adopted to synthesize crystalline GNDs under IR irradiation. The as-prepared GNDs are uniformly coated over three types of substrates including Cu foil, cotton cloth and filter paper. The GND thin films emit tunable fluorescence upon thermal treatment of GNDs at 400 °C in helium atmosphere. The thermally treated GND-based thin film exhibits excellent thermal as well as electrical conductivity compared to bare GNDs and reduced graphene oxide sheets. The enhanced conductivity is due to the reduced oxidation level induced by the thermal treatment on GNDs samples which subsequently decreases the photon scattering. With increasing weight loading, GNDs can serve not only as connective point but also as stuff, offering a well-developed conductive path for the heat dissipation. Accordingly, the design of GND thin film is promising for enhanced thermal management for electronic and photonic applications since it enables engineering the fluorescence emission with substantially increased thermal and electrical conductivities
18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck Cancer: a correlation study between suitable uptake value threshold and tumor parameters
<p>Abstract</p> <p>Background</p> <p>To define a suitable threshold setting for gross tumor volume (GTV) when using <sup>18</sup>Fluoro-deoxyglucose positron emission tomography and computed tomogram (PET/CT) for radiotherapy planning in head and neck cancer (HNC).</p> <p>Methods</p> <p>Fifteen HNC patients prospectively received PET/CT simulation for their radiation treatment planning. Biological target volume (BTV) was derived from PET/CT-based GTV of the primary tumor. The BTVs were defined as the isodensity volumes when adjusting different percentage of the maximal standardized uptake value (SUVmax), excluding any artifact from surrounding normal tissues. CT-based primary GTV (C-pGTV) that had been previously defined by radiation oncologists was compared with the BTV. Suitable threshold level (sTL) could be determined when BTV value and its morphology using a certain threshold level was observed to be the best fitness of the C-pGTV. Suitable standardized uptake value (sSUV) was calculated as the sTL multiplied by the SUVmax.</p> <p>Results</p> <p>Our result demonstrated no single sTL or sSUV method could achieve an optimized volumetric match with the C-pGTV. The sTL was 13% to 27% (mean, 19%), whereas the sSUV was 1.64 to 3.98 (mean, 2.46). The sTL was inversely correlated with the SUVmax [sTL = -0.1004 Ln (SUVmax) + 0.4464; R<sup>2 </sup>= 0.81]. The sSUV showed a linear correlation with the SUVmax (sSUV = 0.0842 SUVmax + 1.248; R<sup>2 </sup>= 0.89). The sTL was not associated with the value of C-pGTVs.</p> <p>Conclusion</p> <p>In PET/CT-based BTV for HNC, a suitable threshold or SUV level can be established by correlating with SUVmax rather than using a fixed threshold.</p
A hematoma confined to the center of the abdomen
Spontaneous rupture of a hepatocellular carcinoma is a rare and lethal complication in the emergency department. A caudate lobe hepatoma rupture is even rarer. It can be treated with vascular embolization, surgical intervention or supportive care. A 70-year-old woman with underlying hepatocellular carcinoma presented to our emergency department with severe abdominal pain encompassing the entire region for half a day. Abdominal computer tomography scans with and without contrast medium revealed a large hematoma confined to the lesser sac of the abdomen. It was initially diagnosed as a ruptured aneurysm. A ruptured caudate lobe hepatoma with acute hemorrhage into the lesser sac was diagnosed after reviewing and discussing the imaging findings with the radiologist. The patient was treated with supportive care without vascular embolization or surgical intervention because there was no imaging evidence of active contrast extravasation and the vital signs were within the normal range. After reviewing the literature, our case appears to be the second only case treated with supportive care and discharged without complications
Engineering of Aromatic Naphthalene and Solvent Molecules to Optimize Chemical Prelithiation for Lithium‐Ion Batteries
A cost-effective chemical prelithiation solution, which consists of Li, polyaromatic hydrocarbon (PAH), and solvent, is developed for a model hard carbon (HC) electrode. Naphthalene and methyl-substituted naphthalene PAHs, namely 2-methylnaphthalene and 1-methylnaphthalene, are first compared. Grafting an electron-donating methyl group onto the benzene ring can decrease electron affinity and thus reduce the redox potential, which is validated by density functional theory calculations. Ethylene glycol dimethyl ether (G1), diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether solvents are then compared. The G1 solution has the highest conductivity and least steric hindrance, and thus the 1-methylnaphthalene/G1 solution shows superior prelithiation capability. In addition, the effects of the interaction time between Li and 1-methylnaphthalene in G1 solvent on the electrochemical properties of a prelithiated HC electrode are investigated. Nuclear magnetic resonance data confirm that 10-h aging is needed to achieve a stable solution coordination state and thus optimal prelithiation efficacy. It is also found that appropriate prelithiation creates a more Li-conducing and robust solid-electrolyte interphase, improving the rate capability and cycling stability of the HC electrode
Managing cardiac arrest with refractory ventricular fibrillation in the emergency department: Conventional cardiopulmonary resuscitation versus extracorporeal cardiopulmonary resuscitation
AbstractAimRefractory ventricular fibrillation, resistant to conventional cardiopulmonary resuscitation (CPR), is a life threatening rhythm encountered in the emergency department. Although previous reports suggest the use of extracorporeal CPR can improve the clinical outcomes in patients with prolonged cardiac arrest, the effectiveness of this novel strategy for refractory ventricular fibrillation is not known. We aimed to compare the clinical outcomes of patients with refractory ventricular fibrillation managed with conventional CPR or extracorporeal CPR in our institution.MethodThis is a retrospective chart review study from an emergency department in a tertiary referral medical center. We identified 209 patients presenting with cardiac arrest due to ventricular fibrillation between September 2011 and September 2013. Of these, 60 patients were enrolled with ventricular fibrillation refractory to resuscitation for more than 10min. The clinical outcome of patients with ventricular fibrillation received either conventional CPR, including defibrillation, chest compression, and resuscitative medication (C-CPR, n=40) or CPR plus extracorporeal CPR (E-CPR, n=20) were compared.ResultsThe overall survival rate was 35%, and 18.3% of patients were discharged with good neurological function. The mean duration of CPR was longer in the E-CPR group than in the C-CPR group (69.90±49.6min vs 34.3±17.7min, p=0.0001). Patients receiving E-CPR had significantly higher rates of sustained return of spontaneous circulation (95.0% vs 47.5%, p=0.0009), and good neurological function at discharge (40.0% vs 7.5%, p=0.0067). The survival rate in the E-CPR group was higher (50% vs 27.5%, p=0.1512) at discharge and (50% vs 20%, p=0. 0998) at 1 year after discharge.ConclusionsThe management of refractory ventricular fibrillation in the emergency department remains challenging, as evidenced by an overall survival rate of 35% in this study. Patients with refractory ventricular fibrillation receiving E-CPR had a trend toward higher survival rates and significantly improved neurological outcomes than those receiving C-CPR
Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea
Abstract(#br)This paper reports an efficient fabrication of N-doped graphene quantum dots (GQDs) showing controllable chemical and fluorescence (FL) properties through infrared carbonization (IRC) of citric acid and urea. The GQDs prefer to form an equilibrium shapes of circle with an average particle size ranged from 5 to 10 nm. The N/C atomic ratio in GQDs can be precisely tailored in a range from 21.6 to 49.6 at.% by simply controlling the weight ratio of citric acid to urea. With increasing the urea content, the GQDs not only contain N-doped graphene but also incorporate with crystalline cyanuric acid, forming a binary crystallinity. The quantum yield of 22.2% is achieved by N-doped GQDs, prepared from the IRC synthesis of chemical precursor at the citric acid/urea at 3:1. Excessive N and cyanuric acid can lead to FL quenching, red shift and wide spectral distribution. The design of GQDs possesses a multiple chromophoric band-gap structure, originated from the presence of cyanuric acid, defect-related emissive traps, and functional group distributions. This work offers an effective and inspiring approach to engineering both chemical compositions and unique crystalline structures of GQDs, and will therefore facilitate their fundamental research and applications to optical, sensing, energy and biological fields
GT-repeat polymorphism in the heme oxygenase-1 gene promoter and the risk of carotid atherosclerosis related to arsenic exposure
<p>Abstract</p> <p>Background</p> <p>Arsenic is a strong stimulus of heme oxygenase (HO)-1 expression in experimental studies in response to oxidative stress caused by a stimulus. A functional GT-repeat polymorphism in the HO-1 gene promoter was inversely correlated to the development of coronary artery disease in diabetics and development of restenosis following angioplasty in patients. The role of this potential vascular protective factor in carotid atherosclerosis remains unclear. We previously reported a graded association of arsenic exposure in drinking water with an increased risk of carotid atherosclerosis. In this study, we investigated the relationship between HO-1 genetic polymorphism and the risk of atherosclerosis related to arsenic.</p> <p>Methods</p> <p>Three-hundred and sixty-seven participants with an indication of carotid atherosclerosis and an additional 420 participants without the indication, which served as the controls, from two arsenic exposure areas in Taiwan, a low arsenic-exposed Lanyang cohort and a high arsenic-exposed LMN cohort, were studied. Carotid atherosclerosis was evaluated using a duplex ultrasonographic assessment of the extracranial carotid arteries. Allelic variants of (GT)n repeats in the 5'-flanking region of the HO-1 gene were identified and grouped into a short (S) allele (< 27 repeats) and long (L) allele (≥ 27 repeats). The association of atherosclerosis and the HO-1 genetic variants was assessed by a logistic regression analysis, adjusted for cardiovascular risk factors.</p> <p>Results</p> <p>Analysis results showed that arsenic's effect on carotid atherosclerosis differed between carriers of the class S allele (OR 1.39; 95% CI 0.86-2.25; <it>p </it>= 0.181) and non-carriers (OR 2.65; 95% CI 1.03-6.82; <it>p </it>= 0.044) in the high-exposure LMN cohort. At arsenic exposure levels exceeding 750 μg/L, difference in OR estimates between class S allele carriers and non-carriers was borderline significant (<it>p </it>= 0.051). In contrast, no such results were found in the low-exposure Lanyang cohort.</p> <p>Conclusions</p> <p>This exploratory study suggests that at a relatively high level of arsenic exposure, carriers of the short (GT)n allele (< 27 repeats) in the HO-1 gene promoter had a lower probability of developing carotid atherosclerosis than non-carriers of the allele after long-term arsenic exposure via ground water. The short (GT)n repeat in the HO-1 gene promoter may provide protective effects against carotid atherosclerosis in individuals with a high level of arsenic exposure.</p
- …