5 research outputs found

    Longitudinal biomarkers in amyotrophic lateral sclerosis

    Get PDF
    OBJECTIVE: To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects. METHODS: De-identified, longitudinal plasma, and cerebrospinal fluid (CSF) samples from PALS (n = 108; 85 with samples from \u3e /=2 visits) and controls without neurological disease (n = 41) were obtained from the Northeast ALS Consortium (NEALS) Biofluid Repository. Seventeen of 108 PALS had familial ALS, of whom 10 had C9orf72 mutations. Additional healthy control CSF samples (n = 35) were obtained from multiple sources. We stratified PALS into fast- and slow-progression subgroups using the ALS Functional Rating Scale-Revised change rate. We compared cytokines/chemokines and neurofilament (NF) levels between PALS and controls, among progression subgroups, and in those with C9orf72 mutations. RESULTS: We found significant elevations of cytokines, including MCP-1, IL-18, and neurofilaments (NFs), indicators of neurodegeneration, in PALS versus controls. Among PALS, these cytokines and NFs were significantly higher in fast-progression and C9orf72 mutation subgroups versus slow progressors. Analyte levels were generally stable over time, a key feature for monitoring treatment effects. We demonstrated that CSF/plasma neurofilament light chain (NFL) levels may predict disease progression, and stratification by NFL levels can enrich for more homogeneous patient groups. INTERPRETATION: Longitudinal stability of cytokines and NFs in PALS support their use for monitoring responses to immunomodulatory and neuroprotective treatments. NFs also have prognostic value for fast-progression patients and may be used to select similar patient subsets in clinical trials

    Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders:Randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients

    Get PDF
    RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)-penetrant, small-molecule, reversible inhibitor of RIPK1. In three early-stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well-tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof-of-mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long-term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early-stage clinical trials. The dose-limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1-inhibitors, suggesting that these toxicities are compound-specific (related to SAR443060) rather than RIPK1 pathway-specific

    Safety, pharmacokinetics, and target engagement of a brain penetrant RIPK1 inhibitor, SAR443820 (DNL788), in healthy adult participants

    No full text
    Abstract SAR443820 (DNL788) is a selective, orally bioavailable, brain penetrant inhibitor of receptor‐interacting serine/threonine protein kinase 1 (RIPK1). This phase I first‐in‐human healthy participant study (NCT05795907) was comprised of three parts: randomized, double‐blind, placebo‐controlled single ascending dose (SAD; part 1a); 14‐day multiple ascending dose (MAD; part 2) parts that evaluated safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of SAR443820; and a separate open‐label, single‐dose part 1b (PK‐cerebrospinal fluid [CSF]) to assess SAR443820 levels in CSF. SAR443820 was well‐tolerated in healthy participants, and no treatment discontinuation related to an adverse event (AE) occurred. Most common AEs were dizziness and headache. No clinically meaningful changes were noted in laboratory values, vital signs, or electrocardiogram parameters. SAR443820 had a favorable PK profile, with plasma half‐lives (geometric mean) ranged between 5.7–8.0 h and 7.2–8.9 h after single and repeated doses, respectively. There were no major deviations from dose proportionality for maximum concentration and area under the curve across SAR443820 doses. Mean CSF‐to‐unbound plasma concentration ratio ranged from 0.8 to 1.3 over time (assessed up to 10 h postdose), indicating high brain penetrance. High levels of inhibition of activated RIPK1, as measured by decrease in pS166‐RIPK1, were achieved in both SAD and MAD parts, with a maximum median inhibition from baseline close to 90% at predose (Ctrough) after multiple dosing in MAD, reflecting a marked RIPK1 target engagement at the peripheral level. These results support further development of SAR443820 in phase II trials in amyotrophic lateral sclerosis (NCT05237284) and multiple sclerosis (NCT05630547)

    Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic

    No full text
    GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD
    corecore