9 research outputs found

    AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity.

    Get PDF
    Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1β. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R-dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity

    Membrane Trafficking of Heterotrimeric G Proteins via the Endoplasmic Reticulum and Golgi

    No full text
    Membrane targeting of G-protein αβγ heterotrimers was investigated in live cells by use of Gα and Gγ subunits tagged with spectral mutants of green fluorescent protein. Unlike Ras proteins, Gβγ contains a single targeting signal, the CAAX motif, which directed the dimer to the endoplasmic reticulum. Endomembrane localization of farnesylated Gγ(1), but not geranylgeranylated Gγ(2), required carboxyl methylation. Targeting of the heterotrimer to the plasma membrane (PM) required coexpression of all three subunits, combining the CAAX motif of Gγ with the fatty acyl modifications of Gα. Gα associated with Gβγ on the Golgi and palmitoylation of Gα was required for translocation of the heterotrimer to the PM. Thus, two separate signals, analogous to the dual-signal targeting mechanism of Ras proteins, cooperate to target heterotrimeric G proteins to the PM via the endomembrane

    Anti-Ras Strategies for Cancer Treatment

    No full text

    Flavonoids as P-gp Inhibitors: A Systematic Review of SARs

    No full text

    Ras Family G-Proteins in Saccharomyces Cerevisiae and Schizosaccharomyces Pombe

    No full text
    corecore