6 research outputs found

    Organosolv lignin particles as an ecological reagent in the Kupfershiefer copper ore flotation

    No full text
    Mineral separation relies heavily on the process of flotation. This study explored the feasibility of using organosolv lignin nanoparticles and microparticles (OLP) as a greener alternative to xanthates in the flotation process for mineral separation. Xanthates are widely used but pose environmental and health risks. The efficiency of OLP as collectors was compared to collectorless flotation, resulting in approximately 50% copper recovery, indicating that OLP may not be a suitable replacement for xanthates. Further tests were conducted using a mixture of xanthates and OLP (birch nano and spruce micro) with varying substitution levels (20%, 30%, and 40%). The results demonstrated that increasing the dosage of OLP led to a decrease in flotation efficiency for copper. TOC analysis of the products revealed that high dosages (160 g/t) of birch nano and spruce micro as sole collectors showed beneficiation and selective recovery against copper. While OLPs did not prove effective as collectors, the study highlights their potential as substitutes for maltodextrin in selective flotation of the final concentrate. Two out of four tested OLPs were recommended for pilot scale testing

    Organosolv lignin particles as an ecological reagent in the Kupfershiefer copper ore flotation

    No full text
    Mineral separation relies heavily on the process of flotation. This study explored the feasibility of using organosolv lignin nanoparticles and microparticles (OLP) as a greener alternative to xanthates in the flotation process for mineral separation. Xanthates are widely used but pose environmental and health risks. The efficiency of OLP as collectors was compared to collectorless flotation, resulting in approximately 50% copper recovery, indicating that OLP may not be a suitable replacement for xanthates. Further tests were conducted using a mixture of xanthates and OLP (birch nano and spruce micro) with varying substitution levels (20%, 30%, and 40%). The results demonstrated that increasing the dosage of OLP led to a decrease in flotation efficiency for copper. TOC analysis of the products revealed that high dosages (160 g/t) of birch nano and spruce micro as sole collectors showed beneficiation and selective recovery against copper. While OLPs did not prove effective as collectors, the study highlights their potential as substitutes for maltodextrin in selective flotation of the final concentrate. Two out of four tested OLPs were recommended for pilot scale testing.Validerad;2023;NIvå 2;2023-11-14 (marisr);Funder: EIT RawMaterials GmbH;License fulltext: CC BY</p

    Biological Production of 3-Hydroxypropionic Acid : An Update on the Current Status

    No full text
    The production of high added-value chemicals from renewable resources is a necessity inour attempts to switch to a more sustainable society. 3-Hydroxypropionic acid (3HP) is a promisingmolecule that can be used for the production of an important array of high added-value chemicals,such as 1,3-propanediol, acrylic acid, acrylamide, and bioplastics. Biological production of 3HP hasbeen studied extensively, mainly from glycerol and glucose, which are both renewable resources.To enable conversion of these carbon sources to 3HP, extensive work has been performed to identifyappropriate biochemical pathways and the enzymes that are involved in them. Novel enzymeshave also been identified and expressed in host microorganisms to improve the production yieldsof 3HP. Various process configurations have also been proposed, resulting in improved conversionyields. The intense research efforts have resulted in the production of as much as 83.8 g/L 3HP fromrenewable carbon resources, and a system whereby 3-hydroxypropionitrile was converted to 3HPthrough whole-cell catalysis which resulted in 184.7 g/L 3HP. Although there are still challengesand difficulties that need to be addressed, the research results from the past four years have been animportant step towards biological production of 3HP at the industrial level

    Characterization of Organosolv Lignin Particles and Their Affinity to Sulfide Mineral Surfaces

    No full text
    Organosolv lignin nanoparticles have been recently evaluated for their use in mineral froth flotation as a flotation reagent, and as a result, the recovery of the target minerals was improved and the selectivity of the process was increased. However, the mechanism of lignin activity in mineral froth flotation is not known. Therefore, this study is the first step in understanding the interaction of organosolv lignin with the mineral surface. As such, the organosolv lignin was characterized by GPC and 31P NMR, where the structural differences between the birch and spruce lignins were determined. The molecular size and lignol unit composition were evaluated. Subsequently, the morphology and size of the organosolv lignin particles were examined for all 4 produced types: BN, BM, SN, and SM. The ? potential was measured in the pH range of 2-11. All particles had a high negative charge, which indicated good stability of the dispersion in the alkali range. The stability of their colloidal dispersion was observed under increasing concentrations of mono- and divalent cations, and electrostatic repulsion was identified as the main stabilization mechanism. Finally, QCM-D was used to study the interaction of the lignin particles with the mineral surfaces of chalcopyrite, pyrite, and galena, which gave insight into the possible mechanism during the flotation process.Validerad;2023;Nivå 2;2023-10-16 (joosat);CC BY 4.0 License</p
    corecore