68 research outputs found

    Left pulmonary artery thrombosis in a neonate with left lung hypoplasia

    Get PDF
    Thrombotic events in neonates may origin from fetal life. A 4-day-old newborn infant with a family history of heterozygous type 1 protein C deficiency was diagnosed with left lung hypoplasia and left pulmonary artery thrombosis. Its source was prenatally closed ductus arteriosus. Surgical removal of the thrombus was performed

    Comprehensive Review of Distracted Driving Programs in the United States

    Get PDF
    With advances in technology throughout the course of time, distracted driving is at an all-time high in the United States. Even with high numbers, distraction is likely underreported because the behavior is difficult to detect during crash investigation, and police reports likely understate its incidents. According to NHTSA’s newest analysis of 2021 fatal crash data, fatalities in distraction-affected crashes increased by 12% from 2020 to 2021, a total of 8.2% of all fatalities reported. The impact of distracted driving has recently worsened. A study estimated distraction was involved in 29% of all crashes by observing driver behavior in the real world in 2019. The purpose of this study is 1) to understand the safety performance of distracted driving in the State of Florida; 2) to investigate state laws across the nation to understand the policies and programs that combat distracted driving

    Effect of dexamethasone in patients with ARDS and COVID-19 - prospective, multi-centre, open-label, parallel-group, randomised controlled trial (REMED trial): A structured summary of a study protocol for a randomised controlled trial.

    Get PDF
    OBJECTIVES: The primary objective of this study is to test the hypothesis that administration of dexamethasone 20 mg is superior to a 6 mg dose in adult patients with moderate or severe ARDS due to confirmed COVID-19. The secondary objective is to investigate the efficacy and safety of dexamethasone 20 mg versus dexamethasone 6 mg. The exploratory objective of this study is to assess long-term consequences on mortality and quality of life at 180 and 360 days. TRIAL DESIGN: REMED is a prospective, phase II, open-label, randomised controlled trial testing superiority of dexamethasone 20 mg vs 6 mg. The trial aims to be pragmatic, i.e. designed to evaluate the effectiveness of the intervention in conditions that are close to real-life routine clinical practice. PARTICIPANTS: The study is multi-centre and will be conducted in the intensive care units (ICUs) of ten university hospitals in the Czech Republic. INCLUSION CRITERIA: Subjects will be eligible for the trial if they meet all of the following criteria: 1. Adult (≥18 years of age) at time of enrolment; 2. Present COVID-19 (infection confirmed by RT-PCR or antigen testing); 3. Intubation/mechanical ventilation or ongoing high-flow nasal cannula (HFNC) oxygen therapy; 4. Moderate or severe ARDS according to Berlin criteria:  • Moderate - PaO2/FiO2 100-200 mmHg;  • Severe - PaO2/FiO2 < 100 mmHg; 5. Admission to ICU in the last 24 hours. EXCLUSION CRITERIA: Subjects will not be eligible for the trial if they meet any of the following criteria: 1. Known allergy/hypersensitivity to dexamethasone or excipients of the investigational medicinal product (e.g. parabens, benzyl alcohol); 2. Fulfilled criteria for ARDS for ≥14 days at enrolment; 3. Pregnancy or breastfeeding; 4. Unwillingness to comply with contraception measurements from enrolment until at least 1 week after the last dose of dexamethasone (sexual abstinence is considered an adequate contraception method); 5. End-of-life decision or patient is expected to die within next 24 hours; 6. Decision not to intubate or ceilings of care in place; 7. Immunosuppression and/or immunosuppressive drugs in medical history:  a) Systemic immunosuppressive drugs or chemotherapy in the past 30 days;  b) Systemic corticosteroid use before hospitalization;  c) Any dose of dexamethasone during the present hospital stay for COVID-19 for ≥5 days before enrolment;  d) Systemic corticosteroids during present hospital stay for conditions other than COVID-19 (e.g. septic shock); 8. Current haematological or generalized solid malignancy; 9. Any contraindication for corticosteroid administration, e.g.  • intractable hyperglycaemia;  • active gastrointestinal bleeding;  • adrenal gland disorders;  • presence of superinfection diagnosed with locally established clinical and laboratory criteria without adequate antimicrobial treatment; 10. Cardiac arrest before ICU admission; 11. Participation in another interventional trial in the last 30 days. INTERVENTION AND COMPARATOR: Dexamethasone solution for injection/infusion is the investigational medicinal product as well as the comparator. The trial will assess two doses, 20 mg (investigational) vs 6 mg (comparator). Patients in the intervention group will receive dexamethasone 20 mg intravenously once daily on day 1-5, followed by dexamethasone 10 mg intravenously once daily on day 6-10. Patients in the control group will receive dexamethasone 6 mg day 1-10. All authorized medicinal products containing dexamethasone in the form of solution for i.v. injection/infusion can be used. MAIN OUTCOMES: Primary endpoint: Number of ventilator-free days (VFDs) at 28 days after randomisation, defined as being alive and free from mechanical ventilation. SECONDARY ENDPOINTS: a) Mortality from any cause at 60 days after randomisation; b) Dynamics of inflammatory marker (C-Reactive Protein, CRP) change from Day 1 to Day 14; c) WHO Clinical Progression Scale at Day 14; d) Adverse events related to corticosteroids (new infections, new thrombotic complications) until Day 28 or hospital discharge; e) Independence at 90 days after randomisation assessed by Barthel Index. The long-term outcomes of this study are to assess long-term consequences on mortality and quality of life at 180 and 360 days through telephone structured interviews using the Barthel Index. RANDOMISATION: Randomisation will be carried out within the electronic case report form (eCRF) by the stratified permuted block randomisation method. Allocation sequences will be prepared by a statistician independent of the study team. Allocation to the treatment arm of an individual patient will not be available to the investigators before completion of the whole randomisation process. The following stratification factors will be applied: • Age <65 and ≥ 65; • Charlson Comorbidity index (CCI) <3 and ≥3; • CRP <150 mg/L and ≥150 mg/L • Trial centre. Patients will be randomised in a 1 : 1 ratio into one of the two treatment arms. Randomisation through the eCRF will be available 24 hours every day. BLINDING (MASKING): This is an open-label trial in which the participants and the study staff will be aware of the allocated intervention. Blinded pre-planned statistical analysis will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size is calculated to detect the difference of 3 VFDs at 28 days (primary efficacy endpoint) between the two treatment arms with a two-sided type I error of 0.05 and power of 80%. Based on data from a multi-centre randomised controlled trial in COVID-19 ARDS patients in Brazil and a multi-centre observational study from French and Belgian ICUs regarding moderate to severe ARDS related to COVID-19, investigators assumed a standard deviation of VFD at 28 days as 9. Using these assumptions, a total of 142 patients per treatment arm would be needed. After adjustment for a drop-out rate, 150 per treatment arm (300 patients per study) will be enrolled. TRIAL STATUS: This is protocol version 1.1, 15.01.2021. The trial is due to start on 2 February 2021 and recruitment is expected to be completed by December 2021. TRIAL REGISTRATION: The study protocol was registered on EudraCT No.:2020-005887-70, and on December 11, 2020 on ClinicalTrials.gov (Title: Effect of Two Different Doses of Dexamethasone in Patients With ARDS and COVID-19 (REMED)) Identifier: NCT04663555 with a last update posted on February 1, 2021. FULL PROTOCOL: The full protocol (version 1.1) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the standard formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol

    Double aortic arch with double aneuploidy—rare anomaly in combined Down and Klinefelter syndrome

    Get PDF
    A 14-month-old boy with double aneuploidy and a double aortic arch suffered from frequently recurrent severe feeding and respiratory problems. Chromosomal analysis showed a 48,XXY + 21 karyotype: a double aneuploidy of Down syndrome (DS) and Klinefelter syndrome (KS). Only four cases of double aneuploidy (DS + KS) associated with congenital heart defects have been published of which none had a double aortic arch. Our case report should draw attention to the possibility of a double aortic arch in patients with severe feeding and respiratory problems and a double aneuploidy

    Early detection of isolated severe congenital heart defects is associated with a lower threshold to terminate the pregnancy

    Get PDF
    Introduction: Early detection of isolated severe congenital heart defects (CHDs) allows extra time for chromosomal analysis and informed decision making, resulting in improved perinatal management and patient satisfaction. Therefore, the aim of this study was to assess the value of an additional first-trimester screening scan compared to only a second-trimester scan in fetuses diagnosed with isolated severe CHDs. Prenatal detection rate, time of prenatal diagnosis, and pregnancy outcome were evaluated in the Netherlands after implementation of a national screening program.Materials and methods: We performed a retrospective geographical cohort study and included 264 pre- and postnatally diagnosed isolated severe CHD cases between January 1, 2007, and December 31, 2015, in the Amsterdam region. Severe CHD was defined as potentially life threatening if intervention within the first year of life was required. Two groups were defined: those with a first- and second-trimester anomaly scan (group 1) and those with a second-trimester anomaly scan only (group 2). A first-trimester scan was defined as a scan between 11 + 0 and 13 + 6 weeks of gestation.Results: Overall, the prenatal detection rate for isolated severe CHDs was 65%; 63% were detected before 24 weeks of gestation (97% of all prenatally detected CHDs). Prenatal detection rate was 70.2% in the group with a first- and second-trimester scan (group 1) and 58% in the group with a second-trimester scan only (group 2) (p Conclusion: Prenatal detection rate of isolated severe CHDs and termination of pregnancy rate was higher in the group with both a first- and second-trimester scan. We found no differences between timing of terminations. The additional time after diagnosis allows for additional genetic testing and optimal counseling of expectant parents regarding prognosis and perinatal management, so that well-informed decisions can be made.</p

    Neonatal Myocardial Infarction or Myocarditis?

    Get PDF
    We report a 29 week-gestation preterm infant who presented during his second week of life with cardiogenic shock. Clinical presentation and first diagnostics suggested myocardial infarction, but echocardiographic features during follow-up pointed to a diagnosis of enteroviral myocarditis. The child died of chronic heart failure at 9 months of age. Autopsy showed passed myocardial infarction. No signs for active myocarditis were found. We discuss the difficulties in differentiating between neonatal myocardial infarction and myocarditis. Recognizing enteroviral myocarditis as cause for cardiogenic shock is of importance because of the therapeutic options

    Aorto-ventricular tunnel

    Get PDF
    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta
    • …
    corecore