20 research outputs found

    Test of Digital Electronics for the p-LINAC BPMs at UNILAC

    Get PDF

    Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography

    Get PDF
    Cancer therapy has shown terrific progress leading to important reduction of morbidity and mortality of several kinds of cancer. The therapeutic management of oncologic patients includes combinations of drugs, radiation therapy and surgery. Many of these therapies produce adverse cardiovascular complications which may negatively affect both the quality of life and the prognosis. For several years the most common noninvasive method of monitoring cardiotoxicity has been represented by radionuclide ventriculography while other tests as effort EKG and stress myocardial perfusion imaging may detect ischemic complications, and 24-hour Holter monitoring unmask suspected arrhythmias. Also biomarkers such as troponine I and T and B-type natriuretic peptide may be useful for early detection of cardiotoxicity. Today, the widely used non-invasive method of monitoring cardiotoxicity of cancer therapy is, however, represented by Doppler-echocardiography which allows to identify the main forms of cardiac complications of cancer therapy: left ventricular (systolic and diastolic) dysfunction, valve heart disease, pericarditis and pericardial effusion, carotid artery lesions. Advanced ultrasound tools, as Integrated Backscatter and Tissue Doppler, but also simple ultrasound detection of "lung comet" on the anterior and lateral chest can be helpful for early, subclinical diagnosis of cardiac involvement. Serial Doppler echocardiographic evaluation has to be encouraged in the oncologic patients, before, during and even late after therapy completion. This is crucial when using anthracyclines, which have early but, most importantly, late, cumulative cardiac toxicity. The echocardiographic monitoring appears even indispensable after radiation therapy, whose detrimental effects may appear several years after the end of irradiation

    Influence of plasma shielding in optoacoustic measurements

    No full text
    Simultaneous measurements of laser excited ultrasonic waves in a solid sample and in the surrounding air were used for characterizing the plasma shielding effect and for the evaluation of its influence in optoacoustic measurements. Typical modifications of ultrasonic waves are discussed and the acoustic energy distribution between the solid and the atmosphere is assessed by a comparative analysis of optoacoustic responses received from both probes
    corecore