28 research outputs found

    Molecular approaches to trematode systematics: 'best practice' and implications for future study

    Get PDF
    To date, morphological analysis has been the cornerstone to trematode systematics. However, since the late-1980s we have seen an increased integration of genetic data to overcome problems encountered when morphological data are considered in isolation. Here, we provide advice regarding the ‘best molecular practice’ for trematode taxonomy and systematic studies, in an attempt to help unify the field and provide a solid foundation to underpin future work. Emphasis is placed on defining the study goals and recommendations are made regarding sample preservation, extraction methods, and the submission of molecular vouchers. We advocate generating sequence data from all parasite species/host species/geographic location combinations and stress the importance of selecting two independently evolving loci (one ribosomal and one mitochondrial marker). We recommend that loci should be chosen to provide genetic variation suitable to address the question at hand and for which sufficient ‘useful’ comparative sequence data already exist. Quality control of the molecular data via using proof-reading Taq polymerase, sequencing PCR amplicons using both forward and reverse primers, ensuring that a minimum of 85% overlap exists when constructing consensus sequences, and checking electropherograms by eye is stressed. We advise that all genetic results are best interpreted using a holistic biological approach, which considers morphology, host identity, collection locality, and ecology. Finally, we consider what advances next-generation sequencing holds for trematode taxonomy and systematics

    Tapeworms of Fish

    No full text

    Application of a Reverse Line Blot hybridisation assay for the species-specific identification of cyathostomins (Nematoda, Strongylida) from benzimidazole-treated horses in the Slovak Republic

    No full text
    Five horse farms located in eastern Slovakia were investigated for the presence of benzimidazole-resistant strongyles by faecal egg count reduction test and egg hatch assay. Coprocultures were prepared for each farm from faecal samples taken pre- and post-treatment and harvested larvae were molecularly examined with a Reverse Line Blot assay. Faecal egg count reduction values ranged from 0 to 52.5% and all farms were positive for benzimidazole-resistant cyathostomins. Seven benzimidazole-resistant cyathostomin species were molecularly identified on farms before and also after treatment. These data demonstrate that resistance to benzimidazoles is well established in cyathostomin populations from horse farms in the Slovak Republic and that the molecular assay was able to determine the species-specific distribution of resistant cyathostomins under field conditions[...

    A voltammetric pH sensor for food and biological matrices

    No full text
    Measurement of pH is of fundamental importance in a wide range of environmental, biological and industrial applications. Glass electrode and litmus paper are widely used for this, but the former is difficult to miniaturize, prone to drift and fragile, the latter is inaccurate. This paper describes a pH sensor based on an indoaniline-derivative (4-((4-aminophenyl)imino)-2,6-dimethoxycyclohexa-2,5-dien-1-one), which exploits alternating current voltammetry to measure pH in the range between 2 and 12. The synthetized indoaniline-derivative was not genotoxic (A. cepa assay), and the sensor reliably measured pH in milk, tea, orange juice, blood, urine and saliva. Results were comparable with those obtained with a glass electrode calibrated with certified solutions (maximum relative standard deviation of 3 % and accuracy less than 0.2 pH unit). The sensor had negligible hysteresis, an almost Nernstian sensitivity (56 mV/pH) and was fully functional after a two-month storage. Sensor response showed a limited dependence on temperature (0.14 mV per pH unit and °C) and limited sensitivity to possible interferents such as lithium and sodium ions; its response to these was similar to that of a glass electrode, and was absent for ascorbic acid

    Comparative "Omics" of the Fusarium fujikuroi Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis

    Get PDF
    Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchid endophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style
    corecore