10 research outputs found

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Management of Wintering Short-Eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments

    Subthalamic Nucleus and Sensorimotor Cortex Activity During Speech Production

    Get PDF
    The sensorimotor cortex is somatotopically organized to represent the vocal tract articulators such as lips, tongue, larynx, and jaw. How speech and articulatory features are encoded at the subcortical level, however, remains largely unknown. We analyzed LFP recordings from the subthalamic nucleus (STN) and simultaneous electrocorticography recordings from the sensorimotor cortex of 11 human subjects (1 female) with Parkinson´s disease during implantation of deep-brain stimulation (DBS) electrodes while they read aloud three-phoneme words. The initial phonemes involved either articulation primarily with the tongue (coronal consonants) or the lips (labial consonants). We observed significant increases in high-gamma (60?150 Hz) power in both the STN and the sensorimotor cortex that began before speech onset and persisted for the duration of speech articulation. As expected from previous reports, in the sensorimotor cortex, the primary articulators involved in the production of the initial consonants were topographically represented by high-gamma activity. We found that STN high-gamma activity also demonstrated specificity for the primary articulator, although no clear topography was observed. In general, subthalamic high-gamma activity varied along the ventral?dorsal trajectory of the electrodes, with greater high-gamma power recorded in the dorsal locations of the STN. Interestingly, the majority of significant articulator-discriminative activity in the STN occurred before that in sensorimotor cortex. These results demonstrate that articulator-specific speech information is contained within high-gamma activity of the STN, but with different spatial and temporal organization compared with similar information encoded in the sensorimotor cortex.Fil: Chrabaszcz, Anna. University of Pittsburgh; Estados UnidosFil: Neumann, Wolf Julian. Universität zu Berlin; AlemaniaFil: Stretcu, Otilia. University of Pittsburgh; Estados UnidosFil: Lipski, Witold J.. University of Pittsburgh; Estados UnidosFil: Dastolfo Hromack, Christina A.. University of Pittsburgh; Estados UnidosFil: Bush, Alan. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Wang, Dengyu. Tsinghua University; China. University of Pittsburgh; Estados UnidosFil: Crammond, Donald J.. University of Pittsburgh; Estados UnidosFil: Shaiman, Susan. University of Pittsburgh; Estados UnidosFil: Dickey, Michael W.. University of Pittsburgh; Estados UnidosFil: Holt, Lori L.. University of Pittsburgh; Estados UnidosFil: Turner, Robert S.. University of Pittsburgh; Estados UnidosFil: Fiez, Julie A.. University of Pittsburgh; Estados UnidosFil: Richardson, R. Mark. University of Pittsburgh; Estados Unido

    Management of Wintering Short-eared Owls at Airports in the Lower Great Lakes Region

    Get PDF
    USDA Wildlife Services airport wildlife biologists have been tasked with reducing the hazards that raptors (including owls) pose to safe aircraft operations at airports and military airfields throughout the USA. A review of available wildlife strike information suggests short-eared owls (Asio flammeus) are frequently struck by aircraft during the winter months at numerous airports within the Lower Great Lakes Region of the United States. Further, this species is listed as ‘endangered’ by state fish and wildlife agencies in many states, although not at the federal level. Consequently, there is particular interest in developing non-lethal management tools for reducing the hazards posed by this species. In an effort to gain a better understanding of the efficacy of managing the hazards to aviation posed by short-eared owls, we developed methods to live-capture, mark with USGS aluminum leg bands, and translocate short-eared owls from airport environments (i.e., airfield areas) as part of the overall programs to reduce wildlife hazards to safe aircraft operations at airports. During 2012−2015, a total of 32 short-eared owls was live-captured, banded, and translocated to release sites approximately 64 to 80 km (40 to 50 miles) away from the airports. Only 1 short-eared owl (3%) was resighted and this bird was found on a different airport from where it had been translocated from. Future research in needed to evaluate the efficacy of translocating wintering short-eared owls from airport environments
    corecore