3,006 research outputs found

    To Duckweeds (\u3cem\u3eLandoltia punctata\u3c/em\u3e), Nanoparticulate Copper Oxide is More Inhibitory than the Soluble Copper in the Bulk Solution

    Get PDF
    CuO nanoparticles (CuO-NP) were synthesized in a hydrogen diffusion flame. Particle size and morphology were characterized using scanning mobility particle sizing, Brunauer–Emmett–Teller analysis, dynamic light scattering, and transmission electron microscopy. The solubility of CuO-NP varied with both pH and presence of other ions. CuO-NP and comparable doses of soluble Cu were applied to duckweeds, Landoltia punctata. Growth was inhibited 50% by either 0.6 mg L−1 soluble copper or by 1.0 mg L−1 CuO-NP that released only 0.16 mg L−1 soluble Cu into growth medium. A significant decrease of chlorophyll was observed in plants stressed by 1.0 mg L−1 CuO-NP, but not in the comparable 0.2 mg L−1 soluble Cu treatment. The Cu content of fronds exposed to CuO-NP is four times higher than in fronds exposed to an equivalent dose of soluble copper, and this is enough to explain the inhibitory effects on growth and chlorophyll content

    Thermoacoustic tomography with variable sound speed

    Full text link
    We study the mathematical model of thermoacoustic tomography in media with a variable speed for a fixed time interval, greater than the diameter of the domain. In case of measurements on the whole boundary, we give an explicit solution in terms of a Neumann series expansion. We give necessary and sufficient conditions for uniqueness and stability when the measurements are taken on a part of the boundary

    Endogenous transforming growth factor β1 suppresses inflammation and promotes survival in adult CNS

    Get PDF
    Transforming growth factor β1 (TGFβ1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGFβ1 and the effects of TGFβ1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGFβ1-deficient mice, this study was performed on a T- and B-cell-deficient RAG2-/- background. Compared with wild-type siblings, homozygous deletion of TGFβ1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [αXβ2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGFβ1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), α6β1, and αMβ2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGFβ1 also caused an ∼10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain. Copyright © 2007 Society for Neuroscience

    Thermoacoustic tomography arising in brain imaging

    Full text link
    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary

    Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra

    Full text link
    We present explicit filtration/backprojection-type formulae for the inversion of the spherical (circular) mean transform with the centers lying on the boundary of some polyhedra (or polygons, in 2D). The formulae are derived using the double layer potentials for the wave equation, for the domains with certain symmetries. The formulae are valid for a rectangle and certain triangles in 2D, and for a cuboid, certain right prisms and a certain pyramid in 3D. All the present inversion formulae yield exact reconstruction within the domain surrounded by the acquisition surface even in the presence of exterior sources.Comment: 9 figure

    Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm

    Full text link
    Practical applications of thermoacoustic tomography require numerical inversion of the spherical mean Radon transform with the centers of integration spheres occupying an open surface. Solution of this problem is needed (both in 2-D and 3-D) because frequently the region of interest cannot be completely surrounded by the detectors, as it happens, for example, in breast imaging. We present an efficient numerical algorithm for solving this problem in 2-D (similar methods are applicable in the 3-D case). Our method is based on the numerical approximation of plane waves by certain single layer potentials related to the acquisition geometry. After the densities of these potentials have been precomputed, each subsequent image reconstruction has the complexity of the regular filtration backprojection algorithm for the classical Radon transform. The peformance of the method is demonstrated in several numerical examples: one can see that the algorithm produces very accurate reconstructions if the data are accurate and sufficiently well sampled, on the other hand, it is sufficiently stable with respect to noise in the data

    Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    Get PDF
    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect

    Synchronizing inventory and transport within supply chain management

    Get PDF
    The problem considers synchronized optimization of inventory and transport, and focuses on producer-distributor relations. Particular attention is paid to developing a mathematical model and an optimization problem that can be used to minimize the overall distribution cost by an appropriate placement of warehouses and cross-docking points. Solutions to this problem are explored using genetic algorithms and ideas from graph/network theory. Note: there are three separate reports contained within the uploaded .pdf file
    corecore