8 research outputs found

    Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and <i>Microsponge</i> Drug-Delivery Systems

    No full text
    This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind

    Retrospective quality control review of FDG scans in the imaging sub-study of PALETTE EORTC 62072/VEG110727: a randomized, double-blind, placebo-controlled phase III trial

    Get PDF
    (18)F-Labelled fluorodeoxyglucose (FDG) can detect early changes in tumour metabolism and may be a useful quantitative imaging biomarker (QIB) for prediction of disease stabilization, response and duration of progression-free survival (PFS). Standardization of imaging procedures is a prerequisite, especially in multicentre clinical trials. In this study we reviewed the quality of FDG scans and compliance with the imaging guideline (IG) in a phase III clinical trial.status: publishe

    Retrospective quality control review of FDG scans in the imaging sub-study of PALETTE EORTC 62072/VEG110727: a randomized, double-blind, placebo-controlled phase III trial

    No full text
    Contains fulltext : 153884.pdf (Publisher’s version ) (Open Access)PURPOSE: (18)F-Labelled fluorodeoxyglucose (FDG) can detect early changes in tumour metabolism and may be a useful quantitative imaging biomarker (QIB) for prediction of disease stabilization, response and duration of progression-free survival (PFS). Standardization of imaging procedures is a prerequisite, especially in multicentre clinical trials. In this study we reviewed the quality of FDG scans and compliance with the imaging guideline (IG) in a phase III clinical trial. METHODS: Forty-four cancer patients were enroled in an imaging sub-study of a randomized international multicentre trial. FDG scan had to be performed at baseline and 10-14 days after treatment start. The image transmittal forms (ITFs) and Digital Imaging and Communications in Medicine (DICOM) [1] standard headers were analysed for compliance with the IG. Mean liver standardized uptake values (LSUVmean) were measured as recommended by positron emission tomography (PET) Response Criteria in Solid Tumors 1.0 (PERCIST) [2]. RESULTS: Of 88 scans, 81 were received (44 patients); 36 were properly anonymized; 77/81 serum glucose values submitted, all but one within the IG. In 35/44 patients both scans were of sufficient visual quality. In 22/70 ITFs the reported UT differed by >1 min from the DICOM headers (max. difference 1 h 4 min). Based on the DICOM, UT compliance for both scans was 31.4%. LSUVmean was fairly constant for the 11 patients with UT compliance: 2.30 +/- 0.33 at baseline and 2.27 +/- 0.48 at follow-up (FU). Variability substantially increased for the subjects with unacceptable UT (11 patients): 2.27 +/- 1.04 at baseline and 2.18 +/- 0.83 at FU. CONCLUSION: The high attrition number of patients due to low compliance with the IG compromised the quantitative assessment of the predictive value for early response monitoring. This emphasizes the need for better regulated procedures in imaging departments, which may be achieved by education of involved personnel or efforts towards regulations. LSUVmean could be monitored to assess quality and compliance in an FDG PET/CT study.10 p
    corecore