141 research outputs found

    Electrospun fluorescent nanofibers for explosive detection

    Get PDF
    Development of an instant on-site visual detection method for 2,4,6 trinitrotoluene (TNT) has become a significant requirement of the hour towards a secured society and a greener environment. Despite momentous advances in the respective field, a portable and reliable method for quick and selective detection of TNT still poses a challenge to many reasons attributing to inappropriate usage in subordinate areas and untrained personnel. The recent effort on the fluorescent based detection represents as one of easy method in terms of fast response time and simple on/off detection. Therefore, this chapter provides a consolidation of information relating to recent advances in fluorescence based TNT detection.Further, the main focus will be towards advances in the nanofibers based TNT detection and their reason to improving thesensitivity. © Springer International Publishing Switzerland 2015

    Morphology, chemical composition, and electrochemical characteristics of colored titanium passive layers

    No full text
    Brightly and uniformly colored passive layers on Ti are formed by application of ac polarization in aqueous NH4BF4. A wide spectrum of well-defined colors is accomplished by varying the ac voltage. The passive films are stable in the ambient and in aqueous chloride, perchlorate, and sulfate solutions. Optical microscopy and scanning electron microscopy analyses indicate that the passive layers are compact and do not show fractures or cracks. An X-ray photoelectron spectroscopy (XPS) characterization of the colored passive layers demonstrates that their surface-chemical composition depends on the ac polarization voltage. The main constituents of the passive layers are Tiz+, O2-, and F- (z varies from 4 to 2 depending on the film's depth). Fluoride in the film originates from decomposition of NH4BF4, and it accumulates at the inner metal/passive-film interface. XPS depth profiling shows that the higher the ac voltage applied, the thicker the passive film formed. Electrochemical properties of the colored Ti passive layers are determined by recording polarization curves in the 120.8 to 3.2 V range as well as Tafel plots in the hydrogen evolution reaction (HER) region in 1.0 M aqueous H2SO4. The polarization curves show that the corrosion potential of the colored passive layers shifts toward less-negative potentials indicating that they are more stable than Ti under the same conditions. The passive region for the colored layers resembles that for Ti. The Tafel plots for the HER demonstrate that the passive layers have higher activity toward the HER than Ti. The Tafel relations reveal new features that can be associated with the partial breakdown/decomposition of the passive layers, H absorption, and the onset of Ti hydride formation.Peer reviewed: YesNRC publication: N

    Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell

    No full text
    Gas diffusion cathodes with electrodeposited nickel (Ni) particles have been developed and tested for hydrogen production in a continuous flow microbial electrolysis cell (MEC). A high catalytic activity of electrodeposited Ni particles in such a MEC was obtained without a proton exchange membrane, i.e. under direct cathode exposure to anodic liquid. Co-electrodeposition of Pt and Ni particles did not improve any further hydrogen production. The maximum hydrogen production rate was 5.4 L/LR/day, corresponding to Ni loads between 0.2 and 0.4 mg cm-2. Continuous MEC operation demonstrated stable hydrogen production for over one month. Owing to the fast hydrogen transport through the cathodic gas diffusion layer, the loss of hydrogen production to methanogenic activity was minimal, generally with less than 5% methane in the off-gas. Overall, gas diffusion cathodes with electrodeposited Ni particles demonstrated excellent stability for hydrogen production compared to expensive Pt cathodes.Peer reviewed: YesNRC publication: Ye

    Environmental fate of 2,4-dinitroanisole (DNAN) and its reduced products

    No full text
    Several defense departments intend to replace 2,4,6-trinitrotoluene (TNT) in munitions formulations by the less sensitive 2,4-dinitroanisole (DNAN). To help understand environmental behavior and ecological risk associated with DNAN we investigated its key initial abiotic and biotic reaction routes and determined relevant physicochemical parameters (pKa, log Kow, aqueous solubility (Sw), partition coefficient (Kd)) for the chemical and its products. Reduction of DNAN with either zero valent iron or bacteria regioselectively produced 2-amino-4-nitroanisole (2-ANAN) which, under strict anaerobic conditions, gave 2,4-diaminoanisole (DAAN). Hydrolysis under environmental conditions was insignificant whereas photolysis gave photodegradable intermediates 2-hydroxy-4-nitroanisole and 2,4-dinitrophenol. Physicochemical properties of DNAN and its amino products drastically depended on the type and position of substituent(s) on the aromatic ring. Sw followed the order (TNT < DNAN < 2-ANAN < 4-ANAN < DAAN) whereas log Kow followed the order (DAAN < 4-ANAN < 2-ANAN < DNAN < TNT). In soil, successive replacement of single bondNO2 by single bondNH2 in DNAN enhanced irreversible sorption and reduced bioavailability under oxic conditions. Although DNAN is more soluble than TNT, its lower hydrophobicity and its tendency to form aminoderivatives that sorb irreversibly to soil contribute to make it less toxic than the traditional explosive TNT.Peer reviewed: YesNRC publication: Ye
    corecore