355 research outputs found

    Iterative algorithm for reconstruction of entangled states

    Get PDF
    An iterative algorithm for the reconstruction of an unknown quantum state from the results of incompatible measurements is proposed. It consists of Expectation-Maximization step followed by a unitary transformation of the eigenbasis of the density matrix. The procedure has been applied to the reconstruction of the entangled pair of photons.Comment: 4 pages, no figures, some formulations changed, a minor mistake correcte

    Diluted maximum-likelihood algorithm for quantum tomography

    Full text link
    We propose a refined iterative likelihood-maximization algorithm for reconstructing a quantum state from a set of tomographic measurements. The algorithm is characterized by a very high convergence rate and features a simple adaptive procedure that ensures likelihood increase in every iteration and convergence to the maximum-likelihood state. We apply the algorithm to homodyne tomography of optical states and quantum tomography of entangled spin states of trapped ions and investigate its convergence properties.Comment: v2: Convergence proof adde

    On the local unitary equivalence of states of multi-partite systems

    Get PDF
    Two pure states of a multi-partite system are alway are related by a unitary transformation acting on the Hilbert space of the whole system. This transformation involves multi-partite transformations. On the other hand some quantum information protocols such as the quantum teleportation and quantum dense coding are based on equivalence of some classes of states of bi-partite systems under the action of local (one-particle) unitary operations. In this paper we address the question: ``Under what conditions are the two states states, ϱ\varrho and σ\sigma, of a multi-partite system locally unitary equivalent?'' We present a set of conditions which have to be satisfied in order that the two states are locally unitary equivalent. In addition, we study whether it is possible to prepare a state of a multi-qudit system. which is divided into two parts A and B, by unitary operations acting only on the systems A and B, separately.Comment: 6 revtex pages, 1 figur

    Quantum Zeno tomography

    Full text link
    We show that the resolution "per absorbed particle" of standard absorption tomography can be outperformed by a simple interferometric setup, provided that the different levels of "gray" in the sample are not uniformly distributed. The technique hinges upon the quantum Zeno effect and has been tested in numerical simulations. The scheme we propose could be implemented in experiments with UV-light, neutrons or X-rays.Comment: 8 pages, 5 figure

    Informational completeness of continuous-variable measurements

    Full text link
    We justify that homodyne tomography turns out to be informationally complete when the number of independent quadrature measurements is equal to the dimension of the density matrix in the Fock representation. Using this as our thread, we examine the completeness of other schemes, when continuous-variable observations are truncated to discrete finite-dimensional subspaces.Comment: To appear in Phys. Rev.

    Quantum theory of incompatible observations

    Get PDF
    Maximum likelihood principle is shown to be the best measure for relating the experimental data with the predictions of quantum theory.Comment: 3 page

    Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order

    Get PDF
    The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4) x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive asymmetry in the magnetic excitations above 40 meV was observed for both doping levels, but an additional ferromagnetic mode was observed in x = 0.45 and not in the x = 0.4. We discuss the origin of crossover in the excitation spectrum between x = 0.45 and x = 0.4 with respect to discommensurations in the charge stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings paper from the ICM 2012 conferenc

    Sizing up entanglement in mutually unbiased bases with Fisher information

    Full text link
    An efficient method for assessing the quality of quantum state tomography is developed. Special attention is paid to the tomography of multipartite systems in terms of unbiased measurements. Although the overall reconstruction errors of different sets of mutually unbiased bases are the same, differences appear when particular aspects of the measured system are contemplated. This point is illustrated by estimating the fidelities of genuinely tripartite entangled states.Comment: 7 pages. 3 color figures. Close to the published versio

    Extremal states for photon number and quadratures as gauges for nonclassicality

    Get PDF
    Rotated quadratures carry the phase-dependent information of the electromagnetic field, so they are somehow conjugate to the photon number. We analyze this noncanonical pair, finding an exact uncertatinty relation, as well as a couple of weaker inequalities obtained by relaxing some restrictions of the problem. We also find the intelligent states saturating that relation and complete their characterization by considering extra constraints on the second-order moments of the variables involved. Using these moments, we construct performance measures tailored to diagnose photon-added and Schr\"odinger catlike states, among others.Comment: 6 pages, 4 color figures. Comments welcome

    Testing of quantum phase in matter wave optics

    Full text link
    Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example the discrete Fourier estimation that actually coincides with the operational phase of Noh, Fouge`res and Mandel is obtained for continuous Gaussian signals with phase modulated mean.Since signals in quantum theory are discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory approximation for fitting the phase distribution of almost any state the optimal phase estimation offers in certain cases a measurable better performance. This has been demonstrated in neutron--optical experiment.Comment: 8 pages, 4 figure
    corecore