2,188 research outputs found

    Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice

    Full text link
    We report direct single-laser excitation of the strictly forbidden (6s^2)^1S_0 -(6s6p)^3P_0 clock transition in the even 174Yb isotope confined to a 1D optical lattice. A small (~1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FHWM) with high contrast were observed, demonstrating a record neutral-atom resonance quality factor of 2.6x10^13. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35+/-0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks, and can create new clock possibilities in other alkaline earth-like atoms such as Mg and Ca.Comment: Submitted to Physics Review Letter

    Optical Lattice Induced Light Shifts in an Yb Atomic Clock

    Get PDF
    We present an experimental study of the lattice induced light shifts on the 1S_0-3P_0 optical clock transition (v_clock~518 THz) in neutral ytterbium. The ``magic'' frequency, v_magic, for the 174Yb isotope was determined to be 394 799 475(35)MHz, which leads to a first order light shift uncertainty of 0.38 Hz on the 518 THz clock transition. Also investigated were the hyperpolarizability shifts due to the nearby 6s6p 3P_0 - 6s8p 3P_0, 6s8p 3P_2, and 6s5f 3F_2 two-photon resonances at 759.708 nm, 754.23 nm, and 764.95 nm respectively. By tuning the lattice frequency over the two-photon resonances and measuring the corresponding clock transition shifts, the hyperpolarizability shift was estimated to be 170(33) mHz for a linear polarized, 50 uK deep, lattice at the magic wavelength. In addition, we have confirmed that a circularly polarized lattice eliminates the J=0 - J=0 two-photon resonance. These results indicate that the differential polarizability and hyperpolarizability frequency shift uncertainties in a Yb lattice clock could be held to well below 10^-17.Comment: Accepted to PR

    Observation and absolute frequency measurements of the 1S0 - 3P0 optical clock transition in ytterbium

    Full text link
    We report the direct excitation of the highly forbidden (6s^2) 1S0 - (6s6p) 3P0 optical transition in two odd isotopes of ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at ~70 uK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,593.2 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,850.0 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock and represent nearly a million-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be ~10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.Comment: 4 pages, 3 figure

    Vertical pattern of organic matter decomposability in cryoturbated permafrost-affected soils

    Get PDF
    Permafrost thaw will release additional carbon dioxide into the atmosphere resulting in a positive feedback to climate change. However, the mineralization dynamics of organic matter (OM) stored in permafrost-affected soils remain unclear. We used physical soil fractionation, radiocarbon measurements, incubation experiments, and a dynamic decomposition model to identify distinct vertical pattern in OM decomposability. The observed differences reflect the type of OM input to the subsoil, either by cryoturbation or otherwise, e.g. by advective water-borne transport of dissolved OM. In non-cryoturbated subsoil horizons, most OM is stabilized at mineral surfaces or by occlusion in aggregates. In contrast, pockets of OM-rich cryoturbated soil contain sufficient free particulate OM for microbial decomposition. After thaw, OM turnover is as fast as in the upper active layer. Since cryoturbated soils store ca. 450 Pg carbon, identifying differences in decomposability according to such translocation processes has large implications for the future global carbon cycle and climate, and directs further process model development

    How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter

    Get PDF
    Carbon (C) in soils persists on a range of timescales depending on physical, chemical, and biological processes that interact with soil organic matter (SOM) and affect its rate of decomposition. Together these processes determine the age distribution of soil C. Most attempts to measure this age distribution have relied on operationally defined fractions using properties like density, aggregate stability, solubility, or chemical reactivity. Recently, thermal fractionation, which relies on the activation energy needed to combust SOM, has shown promise for separating young from old C by applying increasing heat to decompose SOM. Here, we investigated radiocarbon (C-14) and C-13 of C released during thermal fractionation to link activation energy to the age distribution of C in bulk soil and components previously separated by density and chemical properties. While physically and chemically isolated fractions had very distinct mean C-14 values, they contributed C across the full temperature range during thermal analysis. Thus, each thermal fraction collected during combustion of bulk soil integrates contributions from younger and older C derived from components having different physical and chemical properties but the same activation energy. Bulk soil and all density and chemical fractions released progressively older and more C-13-enriched C with increasing activation energy, indicating that each operationally defined fraction itself was not homogeneous but contained a mix of C with different ages and degrees of microbial processing. Overall, we found that defining the full age distribution of C in bulk soil is best quantified by first separating particulate C prior to thermal fractionation of mineral-associated SOM. For the Podzol analyzed here, thermal fractions confirmed that similar to 95 % of the mineral-associated organic matter (MOM) had a relatively narrow C-14 distribution, while 5 % was very low in C-14 and likely reflected C from the < 2 mm parent shale material in the soil matrix. After first removing particulate C using density or size separation, thermal fractionation can provide a rapid technique to study the age structure of MOM and how it is influenced by different OM-mineral interactions

    On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance

    Full text link
    The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958-2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.Comment: 16 pages, 7 figures, in press at Solar Physics; minor changes to the text to match final published versio

    Records in a changing world

    Full text link
    In the context of this paper, a record is an entry in a sequence of random variables (RV's) that is larger or smaller than all previous entries. After a brief review of the classic theory of records, which is largely restricted to sequences of independent and identically distributed (i.i.d.) RV's, new results for sequences of independent RV's with distributions that broaden or sharpen with time are presented. In particular, we show that when the width of the distribution grows as a power law in time nn, the mean number of records is asymptotically of order lnn\ln n for distributions with a power law tail (the \textit{Fr\'echet class} of extremal value statistics), of order (lnn)2(\ln n)^2 for distributions of exponential type (\textit{Gumbel class}), and of order n1/(ν+1)n^{1/(\nu+1)} for distributions of bounded support (\textit{Weibull class}), where the exponent ν\nu describes the behaviour of the distribution at the upper (or lower) boundary. Simulations are presented which indicate that, in contrast to the i.i.d. case, the sequence of record breaking events is correlated in such a way that the variance of the number of records is asymptotically smaller than the mean.Comment: 12 pages, 2 figure
    corecore