2,387 research outputs found

    Sequence of ossification in the skeleton of growing and metamorphosing tadpoles of Rana pipiens

    Full text link
    The order of ossification of bones in the skeleton of Rana pipiens during larval growth and metamorphosis has been determined from observations on specimens fixed in 70% alcohol and stained with alizarin red S. The axial skeleton ossifies in a generally cephalo-caudal sequence, beginning with the parasphenoid bone at Taylor-Kollros stages IV-IX, followed by vertebrae (V-IX) and then the urostyle (IX-XIV). Exoccipitals (VII-IX), frontoparietals (XI-XII) and prootics (XIII-XVII) are additional cranial bones which successively ossify before metamorphosis. With the onset of metamorphosis at stage XVIII jawbones and rostral bones of the skull ossify in the following succession: premaxilla, maxilla, septomaxilla, nasal, dentary, angular, squamosal, pterygoid, prevomer, mentomeckelian, quadratojugal, palatine, columella, posteromedial process of “hyoid.” The sphenethmoid does not ossify until after metamorphosis. Ossification of limbbones begins with the femur or humerus at stages X-XII and progresses proximo-distally to the phalanges by stages XIII-XV. Carpals, however, do not ossify until stage XXV or after metamorphosis. The ilium of the pelvic girdle begins to ossify at stages X-XII, but the ischium is delayed until stages XX-XXIII. Scapula and coracoid of the pectoral girdle undergo initial ossification at stages XII-XIV, suprascapula and clavicle at stages XIII-XV. The sternum does not begin to ossify until stage XXIV. The possible role of thyroid hormones in stimulating osteogenesis is discussed.Supported by research grants from the National Science Foundation (GB 4317) and the U. S. Public Health Service (GM 05867-10).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50254/1/1051290404_ftp.pd

    Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice

    Full text link
    We report direct single-laser excitation of the strictly forbidden (6s^2)^1S_0 -(6s6p)^3P_0 clock transition in the even 174Yb isotope confined to a 1D optical lattice. A small (~1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FHWM) with high contrast were observed, demonstrating a record neutral-atom resonance quality factor of 2.6x10^13. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35+/-0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks, and can create new clock possibilities in other alkaline earth-like atoms such as Mg and Ca.Comment: Submitted to Physics Review Letter

    MODIS-HIRIS ground data systems commonality report

    Get PDF
    The High Resolution Imaging Spectrometer (HIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) Data Systems Working Group was formed in September 1988 with representatives of the MODIS Data System Study Group and the HIRIS Project Data System Design Group to collaborate in the development of requirements on the EosDIS necessary to meet the science objectives of the two facility instruments. A major objective was to identify and promote commonality between the HIRIS and MODIS data systems, especially from the science users' point of view. A goal was to provide a base set of joint requirements and specifications which could easily be expanded to a Phase-B representation of the needs of the science users of all EOS instruments. This document describes the points of commonality and difference between the Level-II Requirements, Operations Concepts, and Systems Specifications for the ground data systems for the MODIS and HIRIS instruments at their present state of development

    The Ursinus Weekly, May 8, 1903

    Get PDF
    A plea for pure sport • Audubon Science Club • Baseball • The farmer • YMCA • Valley Forge • Chorus concert • Dr. Crawford speaks • Philadelphia letter • Alumni Association of Ursinus College • Society noteshttps://digitalcommons.ursinus.edu/weekly/3086/thumbnail.jp

    Detection of pediatric upper extremity motor activity and deficits with accelerometry

    Get PDF
    Importance: Affordable, quantitative methods to screen children for developmental delays are needed. Motor milestones can be an indicator of developmental delay and may be used to track developmental progress. Accelerometry offers a way to gather real-world information about pediatric motor behavior. Objective: To develop a referent cohort of pediatric accelerometry from bilateral upper extremities (UEs) and determine whether movement can accurately distinguish those with and without motor deficits. Design, Setting, and Participants: Children aged 0 to 17 years participated in a prospective cohort from December 8, 2014, to December 29, 2017. Children were recruited from Ranken Jordan Pediatric Bridge Hospital, Maryland Heights, Missouri, and Washington University School of Medicine in St Louis, St Louis, Missouri. Typically developing children were included as a referent cohort if they had no history of motor or neurological deficit; consecutive sampling and matching ensured equal representation of sex and age. Children with diagnosed asymmetric motor deficits were included in the motor impaired cohort. Exposures: Bilateral UE motor activity was measured using wrist-worn accelerometers for a total of 100 hours in 25-hour increments. Main Outcomes and Measures: To characterize bilateral UE motor activity in a referent cohort for the purpose of detecting irregularities in the future, total activity and the use ratio between UEs were used to describe typically developing children. Asymmetric impairment was classified using the mono-arm use index (MAUI) and bilateral-arm use index (BAUI) to quantify the acceleration of unilateral movements. Results: A total of 216 children enrolled, and 185 children were included in analysis. Of these, 156 were typically developing, with mean (SD) age 9.1 (5.1) years and 81 boys (52.0%). There were 29 children in the motor impaired cohort, with mean (SD) age 7.4 (4.4) years and 16 boys (55.2%). The combined MAUI and BAUI (mean [SD], 0.86 [0.005] and use ratio (mean [SD], 0.90 [0.008]) had similar F1 values. The area under the curve was also similar between the combined MAUI and BAUI (mean [SD], 0.98 [0.004]) and the use ratio (mean [SD], 0.98 [0.004]). Conclusions and Relevance: Bilateral UE movement as measured with accelerometry may provide a meaningful metric of real-world motor behavior across childhood. Screening in early childhood remains a challenge; MAUI may provide an effective method for clinicians to measure and visualize real-world motor behavior in children at risk for asymmetrical deficits

    A Variant in a MicroRNA complementary site in the 3' UTR of the KIT oncogene increases risk of acral melanoma.

    Get PDF
    MicroRNAs (miRNAs) are small ∼22nt single stranded RNAs that negatively regulate protein expression by binding to partially complementary sequences in the 3' untranslated region (3' UTRs) of target gene messenger RNAs (mRNA). Recently, mutations have been identified in both miRNAs and target genes that disrupt regulatory relationships, contribute to oncogenesis and serve as biomarkers for cancer risk. KIT, an established oncogene with a multifaceted role in melanogenesis and melanoma pathogenesis, has recently been shown to be upregulated in some melanomas, and is also a target of the miRNA miR-221. Here, we describe a genetic variant in the 3' UTR of the KIT oncogene that correlates with a greater than fourfold increased risk of acral melanoma. This KIT variant results in a mismatch in the seed region of a miR-221 complementary site and reporter data suggests that this mismatch can result in increased expression of the KIT oncogene. Consistent with the hypothesis that this is a functional variant, KIT mRNA and protein levels are both increased in the majority of samples harboring the KIT variant. This work identifies a novel genetic marker for increased heritable risk of melanoma
    corecore