17 research outputs found

    Fast brain decoding with random sampling and random projections

    Get PDF
    International audienceMachine learning from brain images is a central tool for image-based diagnosis and diseases characterization. Predicting behavior from functional imaging, brain decoding, analyzes brain activity in terms of the behavior that it implies. While these multivariate techniques are becoming standard brain mapping tools, like mass-univariate analysis, they entail much larger computational costs. In an time of growing data sizes, with larger cohorts and higher-resolutions imaging, this cost is increasingly a burden. Here we consider the use of random sampling and projections as fast data approximation techniques for brain images. We evaluate their prediction accuracy and computation time on various datasets and discrimination tasks. We show that the weight maps obtained after random sampling are highly consistent with those obtained with the whole feature space, while having a fair prediction performance. Altogether, we present the practical advantage of random sampling methods in neuroimaging, showing a simple way to embed back the reduced coefficients, with only a small loss of information

    Improving sparse recovery on structured images with bagged clustering

    Get PDF
    International audience—The identification of image regions associated with external variables through discriminative approaches yields ill-posed estimation problems. This estimation challenge can be tackled by imposing sparse solutions. However, the sensitivity of sparse estimators to correlated variables leads to non-reproducible results, and only a subset of the important variables are selected. In this paper, we explore an approach based on bagging clustering-based data compression in order to alleviate the instability of sparse models. Specifically, we design a new framework in which the estimator is built by averaging multiple models estimated after feature clustering, to improve the conditioning of the model. We show that this combination of model averaging with spatially consistent compression can have the virtuous effect of increasing the stability of the weight maps, allowing a better interpretation of the results. Finally, we demonstrate the benefit of our approach on several predictive modeling problems

    Towards a Faster Randomized Parcellation Based Inference

    Get PDF
    International audienceIn neuroimaging, multi-subject statistical analysis is an essential step, as it makes it possible to draw conclusions for the population under study. However, the lack of power in neuroimaging studies combined with the lack of stability and sensitivity of voxel-based methods may lead to non-reproducible results. A method designed to tackle this problem is Randomized Parcellation-Based Inference (RPBI), which has shown good empirical performance. Nevertheless, the use of an agglomerative clustering algorithm proposed in the initial RPBI formulation to build the parcellations entails a large computation cost. In this paper, we explore two strategies to speedup RPBI: Firstly, we use a fast clustering algorithm called Recursive Nearest Agglomeration (ReNA), to find the parcellations. Secondly, we consider the aggregation of p-values over multiple parcellations to avoid a permutation test. We evaluate their the computation time, as well as their recovery performance. As a main conclusion, we advocate the use of (permuted) RPBI with ReNA, as it yields very fast models, while keeping the performance of slower methods

    Assessing and tuning brain decoders: cross-validation, caveats, and guidelines

    Get PDF
    International audienceDecoding, ie prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within-and across-subject predictions, on multiple datasets –anatomical and functional MRI and MEG– and simulations. Theory and experiments outline that the popular " leave-one-out " strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be more favorable to use sane defaults, in particular for non-sparse decoders

    Restauración de señales bidimensionales mediante optimización convexa

    Get PDF
    Trabajo de Grado (Ingeniero Electrónico)-- Universidad Autónoma de Occidente, 2010PregradoIngeniero(a) en Electrónica y Telecomunicacione

    Restauración de señales bidimensionales mediante optimización convexa

    No full text
    Trabajo de Grado (Ingeniero Electrónico)-- Universidad Autónoma de Occidente, 201
    corecore