4 research outputs found

    Synchrotron radiation photoionization mass spectrometry of laser ablated species

    Get PDF
    The present paper describes an experimental apparatus suitable to create and study free clusters by combining laser ablation and synchrotron radiation. First tests on sulfur samples, S, showed the production, through laser ablation, of neutral Sn clusters (n = 1–8). These clusters were ionized using synchrotron radiation at photon energies from 160 eV to 175 eV, across the S 2p core edge. The feasibility of such combined ablation–synchrotron radiation experiments is demonstrated, opening new possibilities on the investigation of free clusters and radical

    Molecular systematics of teioid lizards (Teioidea/Gymnophthalmoidea: Squamata) based on the analysis of 48 loci under tree-alignment and similarity-alignment

    No full text
    We infer phylogenetic relationships within Teioidea, a superfamily of Nearctic and Neotropical lizards, using nucleotide sequences. Phylogenetic analyses relied on parsimony under tree-alignment and similarity-alignment, with length variation (i.e. gaps) treated as evidence and as absence of evidence, and maximum-likelihood under similarity-alignment with gaps as absence of evidence. All analyses produced almost completely resolved trees despite 86% of missing data. Tree-alignment produced the shortest trees, the strict consensus of which is more similar to the maximum-likelihood tree than to any of the other parsimony trees, in terms of both number of clades shared, parsimony cost and likelihood scores. Comparisons of tree costs suggest that the pattern of indels inferred by similarity-alignment drove parsimony analyses on similarity-aligned sequences away from more optimal solutions. All analyses agree in a majority of clades, although they differ from each other in unique ways, suggesting that neither the criterion of optimality, alignment nor treatment of indels alone can explain all differences. Parsimony rejects the monophyly of Gymnophthalmidae due to the position of Alopoglossinae relative to Teiidae, whereas support of Gymnophthalmidae by maximum-likelihood was low. We address various nomenclatural issues, including Gymnophthalmidae Fitzinger, 1826 being an older name than Teiidae Gray, 1827. We recognize three families in the arrangement Alopoglossidae + (Teiidae + Gymnophthalmidae). Within Gymnophthalmidae we recognize Cercosaurinae, Gymnophthalminae, Rhachisaurinae and Riolaminae in the relationship Cercosaurinae + (Rhachisaurinae + (Riolaminae + Gymnophthalminae)). Cercosaurinae is composed of three tribes—Bachiini, Cercosaurini and Ecpleopodini—and Gymnophthalminae is composed of three—Gymnophthalmini, Heterodactylini and Iphisini. Within Teiidae we retain the currently recognized three subfamilies in the arrangement: Callopistinae + (Tupinambinae + Teiinae). We also propose several genus-level changes to restore the monophyly of taxa.This study was funded by the Spanish Ministry of Science and Innovation Projects CGL2008-04164 and CLG2011-30393 (I. De La Riva, PI), and CGL2010-21250 and CGL2011-30393 (Carles Vila, PI),Peer Reviewe

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore