3,569 research outputs found

    Interpretations of the Accelerating Universe

    Full text link
    It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy'. We argue here that an alternative model of the universe is possible which explains the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a paragraph on the interpretation of the CMB anisotropy in the QSSC added in conclusion, general results unchanged. To appear in the October 2002 issue of the "Publications of the Astronmical Society of the Pacific

    The cosmological BCS mechanism and the Big Bang Singularity

    Full text link
    We provide a novel mechanism that resolves the Big Bang Singularity present in FRW space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in General Relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter HH to zero and results in a non-singular bounce, at least in some special cases.Comment: replaced to match the journal versio

    Elastomeric Adhesive Properties-Shear Strength, Shear Modulus, Creep, and Recovery

    Get PDF
    Three commercially available adhesives, approved for use in field glued floor systems, were evaluated for potential structural application in light frame wood buildings. All had adequate static shear strength for common floor and roof sheathing uses. Two were sufficiently rigid to generate useful composite action. One displayed relative creep compatible with wood structural design practice but two had excessive relative creep. The adhesive with good creep properties also had good recovery properties. The other two had poor recovery properties. One adhesive that had good shear strength in a conventional block shear test would not consistently sustain stress as low as 25 psi for more than four days. All tests were conducted on bonded wood specimens at 70 F (21 C) and 12% EMC

    Late-Season Bermudagrass Control with Glyphosate, Fluazifop, and Mesotrione Combinations

    Get PDF
    All herbicide treatments at the Rocky Ford Research Center (RF) resulted in unacceptable control, as all plots resulted in 100% green bermudagrass cover by August 25, 2014. Any herbicide treatment combination that included glyphosate provided moderate or better control at Stagg Hill Golf Course (SH). Treatments not containing glyphosate showed no control throughout research trial

    Cosmic Needles versus Cosmic Microwave Background Radiation

    Get PDF
    It has been suggested by a number of authors that the 2.7K cosmic microwave background (CMB) radiation might have arisen from the radiation from Population III objects thermalized by conducting cosmic graphite/iron needle-shaped dust. Due to lack of an accurate solution to the absorption properties of exceedingly elongated grains, in existing literature which studies the CMB thermalizing process they are generally modelled as (1) needle-like spheroids in terms of the Rayleigh approximation; (2) infinite cylinders; and (3) the antenna theory. We show here that the Rayleigh approximation is not valid since the Rayleigh criterion is not satisfied for highly conducting needles. We also show that the available intergalactic iron dust, if modelled as infinite cylinders, is not sufficient to supply the required opacity at long wavelengths to obtain the observed isotropy and Planckian nature of the CMB. If appealing to the antenna theory, conducting iron needles with exceedingly large elongations (10^4) appear able to provide sufficient opacity to thermalize the CMB within the iron density limit. But the applicability of the antenna theory to exceedingly thin needles of nanometer/micrometer in thickness needs to be justified.Comment: 13 pages, 4 figures; submitted to ApJ

    Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    Get PDF
    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct

    Astrophysical implications of hypothetical stable TeV-scale black holes

    Get PDF
    We analyze macroscopic effects of TeV-scale black holes, such as could possibly be produced at the LHC, in what is regarded as an extremely hypothetical scenario in which they are stable and, if trapped inside Earth, begin to accrete matter. We examine a wide variety of TeV-scale gravity scenarios, basing the resulting accretion models on first-principles, basic, and well-tested physical laws. These scenarios fall into two classes, depending on whether accretion could have any macroscopic effect on the Earth at times shorter than the Sun's natural lifetime. We argue that cases with such effect at shorter times than the solar lifetime are ruled out, since in these scenarios black holes produced by cosmic rays impinging on much denser white dwarfs and neutron stars would then catalyze their decay on timescales incompatible with their known lifetimes. We also comment on relevant lifetimes for astronomical objects that capture primordial black holes. In short, this study finds no basis for concerns that TeV-scale black holes from the LHC could pose a risk to Earth on time scales shorter than the Earth's natural lifetime. Indeed, conservative arguments based on detailed calculations and the best-available scientific knowledge, including solid astronomical data, conclude, from multiple perspectives, that there is no risk of any significance whatsoever from such black holes.Comment: Version2: Minor corrections/fixed typos; updated reference

    Modeling Repulsive Gravity with Creation

    Get PDF
    There is a growing interest in the cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold and Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z<0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory - the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.Comment: The paper uses an old SNeIa dataset. With the new improved data, for example the updated gold sample (Riess et al, astro-ph/0611572), the fit improves considerably (\chi^2/DoF=197/180 and a probability of goodness-of-fit=18%

    Improved Torsion Pendulum for Ground Testing of LISA Displacement Sensors

    Full text link
    We discuss a new torsion pendulum design for ground testing of prototype LISA (Laser Interferometer Space Antenna) displacement sensors. This new design is directly sensitive to net forces and therefore provides a more representative test of the noisy forces and parasitic stiffnesses acting on the test mass as compared to previous ground-based experiments. We also discuss a specific application to the measurement of thermal gradient effects.Comment: 4 pages 1 figure, to appear in the Proceedings of the 10th Marcel Grossmann Meeting on General Relativit
    • …
    corecore