3,669 research outputs found
Detachment, Futile Cycling and Nucleotide Pocket Collapse in Myosin-V Stepping
Myosin-V is a highly processive dimeric protein that walks with 36nm steps
along actin tracks, powered by coordinated ATP hydrolysis reactions in the two
myosin heads. No previous theoretical models of the myosin-V walk reproduce all
the observed trends of velocity and run-length with [ADP], [ATP] and external
forcing. In particular, a result that has eluded all theoretical studies based
upon rigorous physical chemistry is that run length decreases with both
increasing [ADP] and [ATP]. We systematically analyse which mechanisms in
existing models reproduce which experimental trends and use this information to
guide the development of models that can reproduce them all. We formulate
models as reaction networks between distinct mechanochemical states with
energetically determined transition rates. For each network architecture, we
compare predictions for velocity and run length to a subset of experimentally
measured values, and fit unknown parameters using a bespoke MCSA optimization
routine. Finally we determine which experimental trends are replicated by the
best-fit model for each architecture. Only two models capture them all: one
involving [ADP]-dependent mechanical detachment, and another including
[ADP]-dependent futile cycling and nucleotide pocket collapse. Comparing
model-predicted and experimentally observed kinetic transition rates favors the
latter.Comment: 11 pages, 5 figures, 6 table
On searches for gravitational waves from mini creation event by laser interferometric detectors
As an alternative view to the standard big bang cosmology the quasi-steady
state cosmology(QSSC) argues that the universe was not created in a single
great explosion; it neither had a beginning nor will it ever come to an end.
The creation of new matter in the universe is a regular feature occurring
through finite explosive events. Each creation event is called a mini-bang or,
a mini creation event(MCE). Gravitational waves are expected to be generated
due to any anisotropy present in this process of creation. Mini creation event
ejecting matter in two oppositely directed jets is thus a source of
gravitational waves which can in principle be detected by laser interferometric
detectors. In the present work we consider the gravitational waveforms
propagated by linear jets and then estimate the response of laser
interferometric detectors like LIGO and LISA
Properties of a future susy universe
In the string landscape picture, the effective potential is characterized by
an enormous number of local minima of which only a minuscule fraction are
suitable for the evolution of life. In this "multiverse", random transitions
are continually made between the various minima with the most likely
transitions being to minima of lower vacuum energy. The inflationary era in the
very early universe ended with such a transition to our current phase which is
described by a broken supersymmetry and a small, positive vacuum energy.
However, it is likely that an exactly supersymmetric (susy) phase of zero
vacuum energy as in the original superstring theory also exists and that, at
some time in the future, there will be a transition to this susy world. In this
article we make some preliminary estimates of the consequences of such a
transition.Comment: 17 pages, 3 figures; intermediate extensions/revisions available at
http://www.bama.ua.edu/~lclavell/Susyria.pd
A kinetic model describing the processivity of Myosin-V
The precise details of how myosin-V coordinates the biochemical reactions and mechanical motions of its two head elements to engineer effective processive molecular motion along actin filaments remain unresolved. We compare a quantitative kinetic model of the myosin-V walk, consisting of five basic states augmented by two further states to allow for futile hydrolysis and detachments, with experimental results for run lengths, velocities, and dwell times and their dependence on bulk nucleotide concentrations and external loads in both directions. The model reveals how myosin-V can use the internal strain in the molecule to synchronize the motion of the head elements. Estimates for the rate constants in the reaction cycle and the internal strain energy are obtained by a computational comparison scheme involving an extensive exploration of the large parameter space. This scheme exploits the fact that we have obtained analytic results for our reaction network, e.g., for the velocity but also the run length, diffusion constant, and fraction of backward steps. The agreement with experiment is often reasonable but some open problems are highlighted, in particular the inability of such a general model to reproduce the reported dependence of run length on ADP concentration. The novel way that our approach explores parameter space means that any confirmed discrepancies should give new insights into the reaction network model
The cosmological BCS mechanism and the Big Bang Singularity
We provide a novel mechanism that resolves the Big Bang Singularity present
in FRW space-times without the need for ghost fields. Building on the fact that
a four-fermion interaction arises in General Relativity when fermions are
covariantly coupled, we show that at early times the decrease in scale factor
enhances the correlation between pairs of fermions. This enhancement leads to a
BCS-like condensation of the fermions and opens a gap dynamically driving the
Hubble parameter to zero and results in a non-singular bounce, at least in
some special cases.Comment: replaced to match the journal versio
Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak-lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_(PZ)(z)∝dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of n^i, but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts
n^i(z)=n^i_(PZ)(z−Δz^i) to correct the mean redshift of n^i(z) for biases in n^i_(PZ). The Δz^i are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the Cosmic Evolution Survey (COSMOS) field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δziof the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the n^i(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δz^i in the bins where both can be applied, with combined uncertainties of
σΔ_(z^i_ = 0.015,0.013,0.011, and 0.022 in the four bins. Repeating the photo-z procedure instead using the Directional Neighbourhood Fitting algorithm, or using the n^i(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences
Cross-Newell equations for hexagons and triangles
The Cross-Newell equations for hexagons and triangles are derived for general
real gradient systems, and are found to be in flux-divergence form. Specific
examples of complex governing equations that give rise to hexagons and
triangles and which have Lyapunov functionals are also considered, and explicit
forms of the Cross-Newell equations are found in these cases. The general
nongradient case is also discussed; in contrast with the gradient case, the
equations are not flux-divergent. In all cases, the phase stability boundaries
and modes of instability for general distorted hexagons and triangles can be
recovered from the Cross-Newell equations.Comment: 24 pages, 1 figur
- …