93 research outputs found

    Transcription factor binding to Caenorhabditis elegans first introns reveals lack of redundancy with gene promoters

    Get PDF
    Gene expression is controlled through the binding of transcription factors (TFs) to regulatory genomic regions. First introns are longer than other introns in multiple eukaryotic species and are under selective constraint. Here we explore the importance of first introns in TF binding in the nematode Caenorhabditis elegans by combining computational predictions and experimentally derived TF-DNA interaction data. We found that first introns of C. elegans genes, particularly those for families enriched in long first introns, are more conserved in length, have more conserved predicted TF interactions and are bound by more TFs than other introns. We detected a significant positive correlation between first intron size and the number of TF interactions obtained from chromatin immunoprecipitation assays or determined by yeast one-hybrid assays. TFs that bind first introns are largely different from those binding promoters, suggesting that the different interactions are complementary rather than redundant. By combining first intron and promoter interactions, we found that genes that share a large fraction of TF interactions are more likely to be co-expressed than when only TF interactions with promoters are considered. Altogether, our data suggest that C. elegans gene regulation may be additive through the combined effects of multiple regulatory regions

    OrthoList: A Compendium of C. elegans Genes with Human Orthologs

    Get PDF
    C. elegans is an important model for genetic studies relevant to human biology and disease. We sought to assess the orthology between C. elegans and human genes to understand better the relationship between their genomes and to generate a compelling list of candidates to streamline RNAi-based screens in this model.We performed a meta-analysis of results from four orthology prediction programs and generated a compendium, "OrthoList", containing 7,663 C. elegans protein-coding genes. Various assessments indicate that OrthoList has extensive coverage with low false-positive and false-negative rates. Part of this evaluation examined the conservation of components of the receptor tyrosine kinase, Notch, Wnt, TGF-ß and insulin signaling pathways, and led us to update compendia of conserved C. elegans kinases, nuclear hormone receptors, F-box proteins, and transcription factors. Comparison with two published genome-wide RNAi screens indicated that virtually all of the conserved hits would have been obtained had just the OrthoList set (∼38% of the genome) been targeted. We compiled Ortholist by InterPro domains and Gene Ontology annotation, making it easy to identify C. elegans orthologs of human disease genes for potential functional analysis.We anticipate that OrthoList will be of considerable utility to C. elegans researchers for streamlining RNAi screens, by focusing on genes with apparent human orthologs, thus reducing screening effort by ∼60%. Moreover, we find that OrthoList provides a useful basis for annotating orthology and reveals more C. elegans orthologs of human genes in various functional groups, such as transcription factors, than previously described

    Toward a General Model for the Evolutionary Dynamics of Gene Duplicates

    Get PDF
    Gene duplication is an important process in the functional divergence of genes and genomes. Several processes have been described that lead to duplicate gene retention over different timescales after both smaller-scale events and whole-genome duplication, including neofunctionalization, subfunctionalization, and dosage balance. Two common modes of duplicate gene loss include nonfunctionalization and loss due to population dynamics (failed fixation). Previous work has characterized expectations of duplicate gene retention under the neofunctionalization and subfunctionalization models. Here, that work is extended to dosage balance using simulations. A general model for duplicate gene loss/retention is then presented that is capable of fitting expectations under the different models, is defined at t = 0, and decays to an orthologous asymptotic rate rather than zero, based upon a modified Weibull hazard function. The model in a maximum likelihood framework shows the property of identifiability, recovering the evolutionary mechanism and parameters of simulation. This model is also capable of recovering the evolutionary mechanism of simulation from data generated using an unrelated network population genetic model. Lastly, the general model is applied as part of a mixture model to recent gene duplicates from the Oikopleura dioica genome, suggesting that neofunctionalization may be an important process leading to duplicate gene retention in that organism

    Caenorhabditis elegans SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling

    Get PDF
    Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP–like receptor signaling. SMA-10 acts genetically in a BMP–like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors

    Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC), including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19).</p> <p>Methods</p> <p>Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS)</p> <p>Results</p> <p>HNTMB displayed high cytotoxicity (IC50 200-400 nM) compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 μM) or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM). In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM). In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS) while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels.</p> <p>Conclusions</p> <p>The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.</p

    High-Affinity Capture of Proteins by Diamond Nanoparticles for Mass Spectrometric Analysis

    Get PDF
    Carboxylated/oxidized diamond nanoparticles (nominal size 100 nm) exhibit exceptionally high affinity for proteins through both hydrophilic and hydrophobic forces. The affinity is so high that proteins in dilute solution can be easily captured by diamonds, simply separated by centrifugation, and directly analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). No preseparation of the adsorbed molecules from diamonds is required for the mass spectrometric analysis. Compared to conventional MALDI-TOF-MS, an enhancement in detection sensitivity by more than 2 orders of magnitude is achieved for dilute solution containing cytochrome c, myoglobin, and albumin because of preconcentration of the probed molecules. The lowest concentration detectable is 100 pM for a 1-mL solution. Aside from the enhanced sensitivity, the overall performance of this technique does not show any sign of deterioration for highly contaminated protein solutions, and furthermore, no significant peak broadening and band shift were observed in the mass spectra. The promise of this new method for clinical proteomics research is demonstrated with an application to human blood serum. Matrix-assisted laser desorption/ionization (MALDI) 1 time-offlight (TOF) mass spectrometry (MS) is a mainstream tool in current high-throughput mass analysis of biopolymers. 2 The MALDI technique, however, suffers from the shortcoming that it lacks sample specificity and its performance deteriorates markedly for samples containing multiple components and excessive amounts of salts or surfactants. 3 Surface-enhanced laser desorption/ ionization (SELDI) is one of the techniques 4-10 developed to circumvent these problems. In this method, 4 micrometer-sized (typically 80-300 µm in diameter) agarose beads made for affinity chromatography columns were used to capture proteins of interest in crude sample solutions. The microbeads were then recovered, washed, placed on the LDI probe tip, and analyzed with regular MALDI-TOF-MS. Unfortunately, direct analysis of the surfacebound proteins is often accompanied with undesired decrease in mass resolution as well as mass accuracy ascribed to the interference from the beads in ion formation and extraction. One solution to this problem is to directly immobilize proteins onto the surface of the LDI probe without use of the microbeads. 7 The approach again suffers from the shortcoming that the number of binding sites is quite limited, ∼1 × 10 13 molecules/cm 2 or ∼160 fmol/mm 2 for a single layer of proteins on the probe surface. The obstacle was later removed by immobilization of the proteins to high molecular weight dextrans precoated covalently on the LDI probe. 8 An approximate 500 times more sample could be loaded, although the dextran immobilization process is rather timeconsuming. We have previously shown 11 that diamond is an exceptional platform for protein adsorption and immobilization. The optical transparency, chemical inertness, and biological compatibility of the material endow diamond nanoparticles with novel and promising biotechnological applications. Preliminary tests with cytochrome c physisorbed to carboxylated/oxidized diamond particles of 5 and 100 nm in size indicate that the specially prepared diamond surfaces exhibit remarkably high affinity for proteins containing amino acid residues with basic side chains. This unique feature along with the fact that diamond is optically transparent up to the UV region motivated us to explore the possibility of using diamond nanoparticles for SELDI-TOF-MS. The advantage of using nanoparticles over microbeads is manyfold. First, nanoparticles have a much larger surface area-to-mass ratio, nearly 3 orders of magnitude higher than that of microbeads; second, the extent to which nanoparticles interfere with the laser desorption/ ionization process is diminished because of the smallness of the particles; third, nanoparticles can be embedded more firmly in the LDI matrix crystals than microbeads, thereby reducing material loss during sample preparation and analysis. There have been several applications of metallic, semiconducting as well as polymeric nanoparticles for mass spectrometric analysis of biopoly
    corecore