5,047 research outputs found
The hbar Expansion in Quantum Field Theory
We show how expansions in powers of Planck's constant hbar = h/2\pi can give
new insights into perturbative and nonperturbative properties of quantum field
theories. Since hbar is a fundamental parameter, exact Lorentz invariance and
gauge invariance are maintained at each order of the expansion. The physics of
the hbar expansion depends on the scheme; i.e., different expansions are
obtained depending on which quantities (momenta, couplings and masses) are
assumed to be independent of hbar. We show that if the coupling and mass
parameters appearing in the Lagrangian density are taken to be independent of
hbar, then each loop in perturbation theory brings a factor of hbar. In the
case of quantum electrodynamics, this scheme implies that the classical charge
e, as well as the fine structure constant are linear in hbar. The connection
between the number of loops and factors of hbar is more subtle for bound states
since the binding energies and bound-state momenta themselves scale with hbar.
The hbar expansion allows one to identify equal-time relativistic bound states
in QED and QCD which are of lowest order in hbar and transform dynamically
under Lorentz boosts. The possibility to use retarded propagators at the Born
level gives valence-like wave-functions which implicitly describe the sea
constituents of the bound states normally present in its Fock state
representation.Comment: 8 pages, 1 figure. Version to be published in Phys. Rev.
Application of ERTS-1 Imagery to Flood Inundation Mapping
Application of ERTS-1 imagery to flood inundation mapping in East and West Nishnabotna basins of southwestern Iow
Evaluation of a ministry formation group for increasing laity intrinsic religious orientation
https://place.asburyseminary.edu/ecommonsatsdissertations/1592/thumbnail.jp
Spatial propagation of excitonic coherence enables ratcheted energy transfer
Experimental evidence shows that a variety of photosynthetic systems can
preserve quantum beats in the process of electronic energy transfer, even at
room temperature. However, whether this quantum coherence arises in vivo and
whether it has any biological function have remained unclear. Here we present a
theoretical model that suggests that the creation and recreation of coherence
under natural conditions is ubiquitous. Our model allows us to theoretically
demonstrate a mechanism for a ratchet effect enabled by quantum coherence, in a
design inspired by an energy transfer pathway in the Fenna-Matthews-Olson
complex of the green sulfur bacteria. This suggests a possible biological role
for coherent oscillations in spatially directing energy transfer. Our results
emphasize the importance of analyzing long-range energy transfer in terms of
transfer between inter-complex coupling (ICC) states rather than between site
or exciton states.Comment: Accepted version for Phys. Rev. E. 14 pages, 7 figure
Photoluminescence and Terahertz Emission from Femtosecond Laser-Induced Plasma Channels
Luminescence as a mechanism for terahertz emission from femtosecond
laser-induced plasmas is studied. By using a fully microscopic theory, Coulomb
scattering between electrons and ions is shown to lead to luminescence even for
a spatially homogeneous plasma. The spectral features introduced by the rod
geometry of laser-induced plasma channels in air are discussed on the basis of
a generalized mode-function analysis.Comment: 4 pages with 2 figures
- …