7 research outputs found

    Centromere Protein B Null Mice are Mitotically and Meiotically Normal but Have Lower Body and Testis Weights

    Get PDF
    CENP-B is a constitutive centromere DNA-binding protein that is conserved in a number of mammalian species and in yeast. Despite this conservation, earlier cytological and indirect experimental studies have provided conflicting evidence concerning the role of this protein in mitosis. The requirement of this protein in meiosis has also not previously been described. To resolve these uncertainties, we used targeted disruption of the Cenpb gene in mouse to study the functional significance of this protein in mitosis and meiosis. Male and female Cenpb null mice have normal body weights at birth and at weaning, but these subsequently lag behind those of the heterozygous and wild-type animals. The weight and sperm content of the testes of Cenpb null mice are also significantly decreased. Otherwise, the animals appear developmentally and reproductively normal. Cytogenetic fluorescence-activated cell sorting and histological analyses of somatic and germline tissues revealed no abnormality. These results indicate that Cenpb is not essential for mitosis or meiosis, although the observed weight reduction raises the possibility that Cenpb deficiency may subtly affect some aspects of centromere assembly and function, and result in reduced rate of cell cycle progression, efficiency of microtubule capture, and/or chromosome movement. A model for a functional redundancy of this protein is presented

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    The 10q25 Neocentromere and its Inactive Progenitor Have Identical Primary Nucleotide Sequence: Further Evidence for Epigenetic Modification

    No full text
    We have previously localized the core centromere protein-binding domain of a 10q25.2-derived neocentromere to an 80-kb genomic region. Detailed analysis has indicated that the 80-kb neocentromere (NC) DNA has a similar overall organization to the corresponding region on a normal chromosome 10 (HC) DNA, derived from a genetically unrelated CEPH individual. Here we report sequencing of the HC DNA and its comparison to the NC sequence. Single-base differences were observed at a maximum rate of 4.6 per kb; however, no deletions, insertions, or other structural rearrangements were detected. To investigate whether the observed changes, or subsets of these, might be de novo mutations involved in neocentromerization (i.e., in committing a region of a chromosome to neocentromere formation), the progenitor DNA (PnC) from which the NC DNA descended, was cloned and sequenced. Direct comparison of the PnC and NC sequences revealed 100% identity, suggesting that the differences between NC and HC DNA are single nucleotide polymorphisms (SNPs) and that formation of the 10q25.2 NC did not involve a change in DNA sequence in the core centromere protein-binding NC region. This is the first study in which a cloned NC DNA has been compared directly with its inactive progenitor DNA at the primary sequence level. The results form the basis for future sequence comparison outside the core protein-binding domain, and provide direct support for the involvement of an epigenetic mechanism in neocentromerization. [The sequences in this paper have been submitted to GenBank under accession nos. AF222855 (not yet available) for HC; AF042484 for NCI; AF222854 (not yet available) for NCII; and AF222856 (not yet available) for PnC.

    A comparison of predictive methods in extinction risk studies: contrasts and decision trees

    No full text
    Over the last two decades an increasing emphasis has been placed on the importance of controlling for phylogeny when examining cross-species data; so-called comparative methods. These methods are appropriate for testing hypotheses about correlations between evolutionary events in the history of a clade and adaptive responses to those changes. When this approach is applied to extinction risk, possible correlations between evolutionary changes in, for example, body size or habitat specialisation and some measure(s) of current threat status are examined. However, there may be a mismatch here between the results of such studies, and the real, pragmatic needs of species conservation. This kind of approach certainly adds to our knowledge of some fundamental processes, but it is more difficult to see how this can be applied to conservation decision-making. For more practical purposes a decision-tree approach can be extremely useful. This paper illustrates the use of a contrasts based analysis of extinction risk compared with a decision-tree analysis for Galliformes (Aves). While the contrasts analyses concur with some general macroecological trends found in other studies, the decision-tree models provide lists of species predicted to be more at risk than current assessments would suggest. We argue that in practical terms, decision tree models might be more useful than a macroecological linear model-based approach

    Histone variants: emerging players in cancer biology

    No full text
    corecore