179 research outputs found

    Measuring White Dwarf Accretion Rates via their Effective Temperatures

    Full text link
    Our previous theoretical study of the impact of an accreting envelope on the thermal state of an underlying white dwarf (WD) has yielded equilibrium core temperatures, classical nova ignition masses and thermal luminosities for WDs accreting at time averaged rates of = 10^-11 - 10^-8 Msun/yr. These 's are appropriate to WDs in cataclysmic variables (CVs) of P_orb <~ 7 hr, many of which accrete sporadically as Dwarf Novae. Approximately thirty nonmagnetic Dwarf Novae have been observed in quiescence, when the accretion rate is low enough for spectral detection of the WD photosphere, and a measurement of T_eff. We use our theoretical work to translate the measured T_eff's into local time-averaged accretion rates, confirming the factor of ten drop in predicted for CV's as they transit the period gap. For DN below the period gap, we show that if is that given by gravitational radiation losses alone, then the WD masses are > 0.8 Msun. An alternative conclusion is that the masses are closer to 0.6 Msun and is 3-4 times larger than that expected from gravitational radiation losses. In either case, it is very plausible that a subset of CVs with P_orb < 2 hours will have T_eff's low enough for them to become non-radial pulsators, as discovered by van Zyl and collaborators in GW Lib.Comment: 4 pages, 3 figures; uses emulateapj; Accepted by the Astrophysical Journal Letter

    Faint Cataclysmic Variables in Quiescence: Globular Cluster and Field Surveys

    Get PDF
    Current evolutionary models imply that most Cataclysmic Variables (CVs) have P_orb<2 hours and are Dwarf Nova (DN) systems that are quiescent most of the time. Observations of nearby quiescent DN find that the UV spectrum is dominated by the hot white dwarf (WD), indicating that it provides a significant fraction of the optical light in addition to the quiescent disk and main sequence companion. Hence, identifying a faint, quiescent CV in either the field or a globular cluster (GC) from broadband colors depends on our ability to predict the WD contribution in quiescence. We are undertaking a theoretical study of the compressional heating of WDs, extending down to very low time averaged accretion rates, ~10^{-11}M_sun/yr, which allows us to self-consistently find the T_eff} of the WD. We demonstrate here that most of the compressional heating occurs in the freshly accreted envelope and that the WD core temperature reaches a fixed value on a timescale less than typical evolutionary times. Since nuclear burning is unstable at these 's, we have incorporated the recurrent heating and cooling of the WD core throughout the classical novae limit cycle in order to find the T_eff- relations. Comparing to observations of field DN confirms the -P_orb relation of disrupted magnetic braking. We also predict broad-band colors of a quiescent CV as a function of and companion mass and show that this leads to the identification of what may be many CVs in deep HST images of GCs.Comment: 4 pages, 3 figures; uses aastex 5.02, apjfonts.sty, and myemulateapj5.sty, a modified emulateapj5 allowing figures in twocolumn format (all files included); To appear in ApJ Letter

    Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run

    Get PDF
    The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1--16 catalog by Huber et al. the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted methodology and over 29,000 new sources for temperatures, surface gravities or metallicities. In addition to fundamental stellar properties the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ~27% in radius, ~17% in mass, and ~51% in density, which is somewhat smaller than previous catalogs due to the larger number of improved logg constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with particular focus on exoplanet host stars.Comment: 19 pages, 13 figures. ApJS in pres

    The Kepler Follow-up Observation Program

    Full text link
    The Kepler Mission was launched on March 6, 2009 to perform a photometric survey of more than 100,000 dwarf stars to search for terrestrial-size planets with the transit technique. Follow-up observations of planetary candidates identified by detection of transit-like events are needed both for identification of astrophysical phenomena that mimic planetary transits and for characterization of the true planets and planetary systems found by Kepler. We have developed techniques and protocols for detection of false planetary transits and are currently conducting observations on 177 Kepler targets that have been selected for follow-up. A preliminary estimate indicates that between 24% and 62% of planetary candidates selected for follow-up will turn out to be true planets.Comment: 12 pages, submitted to the Astrophysical Journal Letter

    Kepler-7b: A Transiting Planet with Unusually Low Density

    Get PDF
    We report the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, Mp = 0.43 Mj, but the radius is fifty percent larger, Rp = 1.48 Rj. The resulting density, 0.17 g/cc, is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, Teff = 6000 K. However, it is more massive and considerably larger than the sun, Mstar = 1.35 Msun and Rstar = 1.84 Rsun, and must be near the end of its life on the Main Sequence.Comment: 19 pages, 3 figure

    Exploring the Optical Transient Sky with the Palomar Transient Factory

    Get PDF
    The Palomar Transient Factory (PTF) is a wide-field experiment designed to investigate the optical transient and variable sky on time scales from minutes to years. PTF uses the CFH12k mosaic camera, with a field of view of 7.9 deg^2 and a plate scale of 1 asec/pixel, mounted on the the Palomar Observatory 48-inch Samuel Oschin Telescope. The PTF operation strategy is devised to probe the existing gaps in the transient phase space and to search for theoretically predicted, but not yet detected, phenomena, such as fallback supernovae, macronovae, .Ia supernovae and the orphan afterglows of gamma-ray bursts. PTF will also discover many new members of known source classes, from cataclysmic variables in their various avatars to supernovae and active galactic nuclei, and will provide important insights into understanding galactic dynamics (through RR Lyrae stars) and the Solar system (asteroids and near-Earth objects). The lessons that can be learned from PTF will be essential for the preparation of future large synoptic sky surveys like the Large Synoptic Survey Telescope. In this paper we present the scientific motivation for PTF and describe in detail the goals and expectations for this experiment.Comment: 15 pages, 6 figures, submitted to PAS

    A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    Full text link
    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.Comment: 12 pages, 2 figures, submitted to the Astrophysical Journal Letter

    KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary

    Get PDF
    Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 5 degrees.5) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio greater than or similar to 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.NASA, Science Mission DirectorateNASA NNX08AR14GEuropean Research Council under the European Community 227224W.M. Keck FoundationMcDonald Observator

    Rapidly Decaying Supernova 2010X: A Candidate ".Ia" Explosion

    Full text link
    We present the discovery, photometric and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with tau_d=5 days, and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r=-17mag and has mean velocities of 10,000 km/s. Our light curve modeling suggests a radioactivity powered event and an ejecta mass of 0.16 Msun. If powered by Nickel, we show that the Nickel mass must be very small (0.02 Msun) and that the supernova quickly becomes optically thin to gamma-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of Aluminum or Helium is present. If Aluminum is present, we speculate that this may be an accretion induced collapse of an O-Ne-Mg white dwarf. If Helium is present, all observables of SN 2010X are consistent with being a thermonuclear Helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1-day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.Comment: 6 pages, 5 figures; Minor Changes; Note correction in Fig 4 caption; published by ApJ
    corecore