98 research outputs found
Ubiquitination at the mitochondria in neuronal health and disease
The preservation of mitochondrial function is of particular importance in neurons given the high energy requirements of action potential propagation and synaptic transmission. Indeed, disruptions in mitochondrial dynamics and quality control are linked to cellular pathology in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Here, we will discuss the role of ubiquitination by the E3 ligases: Parkin, MARCH5 and Mul1, and how they regulate mitochondrial homeostasis. Furthermore, given the role of Parkin and Mul1 in the formation of mitochondria-derived vesicles we give an overview of this area of mitochondrial homeostasis. We highlight how through the activity of these enzymes and MDV formation, multiple facets of mitochondrial biology can be regulated, ensuring the functionality of the mitochondrial network thus preserving neuronal health
Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response
Clearance of mitochondria following damage is critical for neuronal homeostasis. Here, we investigate the role of Miro proteins in mitochondrial turnover by the PINK1/Parkin mitochondrial quality control system in vitro and in vivo. We find that upon mitochondrial damage, Miro is promiscuously ubiquitinated on multiple lysine residues. Genetic deletion of Miro or block of Miro1 ubiquitination and subsequent degradation lead to delayed translocation of the E3 ubiquitin ligase Parkin onto damaged mitochondria and reduced mitochondrial clearance in both fibroblasts and cultured neurons. Disrupted mitophagy in vivo, upon post-natal knockout of Miro1 in hippocampus and cortex, leads to a dramatic increase in mitofusin levels, the appearance of enlarged and hyperfused mitochondria and hyperactivation of the integrated stress response (ISR). Altogether, our results provide new insights into the central role of Miro1 in the regulation of mitochondrial homeostasis and further implicate Miro1 dysfunction in the pathogenesis of human neurodegenerative disease
KCC2 is required for the survival of mature neurons but not for their development
The K+/Cl- co-transporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl- levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis, remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using Tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture
The frontline antibiotic vancomycin induces a zinc starvation response in bacteria by binding to Zn(II).
Vancomycin is a front-line antibiotic used for the treatment of nosocomial infections, particularly those caused by methicillin-resistant Staphylococcus aureus. Despite its clinical importance the global effects of vancomycin exposure on bacterial physiology are poorly understood. In a previous transcriptomic analysis we identified a number of Zur regulon genes which were highly but transiently up-regulated by vancomycin in Streptomyces coelicolor. Here, we show that vancomycin also induces similar zinc homeostasis systems in a range of other bacteria and demonstrate that vancomycin binds to Zn(II) in vitro. This implies that vancomycin treatment sequesters zinc from bacterial cells thereby triggering a Zur-dependent zinc starvation response. The Kd value of the binding between vancomycin and Zn(II) was calculated using a novel fluorometric assay, and NMR was used to identify the binding site. These findings highlight a new biologically relevant aspect of the chemical property of vancomycin as a zinc chelator.This work was supported by funding from the Royal Society, UK (516002.K5877/ROG), the Medical Research Council, UK (G0700141). A.Z. was supported from the Said foundation and Cambridge Trust.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep1960
Are proton pump inhibitors the first choice for acute treatment of gastric ulcers? A meta analysis of randomized clinical trials
BACKGROUND: Gastric ulcers are a frequent problem in the United States. Proton pump inhibitors have been shown to increase healing rates and improve clinical symptoms. The objective of this study is to compare gastric ulcer healing rates for patients treated with a proton pump inhibitor (PPI) (omeprazole, rabeprazole, pantoprazole, or lansoprazole), an histamine 2- receptor antagonist (ranitidine) or placebo. METHODS: A literature search was conducted to identify randomized, controlled clinical trials that included a PPI in at least one treatment arm and assessed the gastric ulcer healing rates endoscopically. The healing rates were estimated for each treatment at specific time points, and Rate Ratios (RR) and 95% confidence intervals (CI) were estimated for each trial. RESULTS: Sixteen trials met the inclusion criteria: four compared a PPI versus placebo, nine compared a PPI versus ranitidine (no trials of rabeprazole versus ranitidine met the inclusion criteria), and three compared a newer PPI (lansoprazole, pantoprazole or rabeprazole) versus omeprazole. In relation to ranitidine, the pooled RR of PPIs (lansoprazole, omeprazole and pantoprazole) was 1.33 (95% CI 1.24 to 1.42) at four weeks. In each trial, greater improvement in the studied clinical symptoms was found with the newer PPIs (rabeprazole, pantoprazole and lansoprazole) when compared to omeprazole. CONCLUSION: In this study treatment with PPIs resulted in higher healing rates than ranitidine or placebo. This evidence suggests that the first choice for gastric ulcer treatment for the greater relief of symptoms is one of the newer PPIs
Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation
Arabidopsis thaliana phosphatidylinositol 3-kinase (AtVPS34) functions in the development and germination of pollen by catalyzing the biosynthesis of phosphatidylinositol 3-phosphate (PI3P). In yeast, Vps15p is required for the membrane targeting and activity of Vps34. The expression of Arabidopsis thaliana VPS15 (AtVPS15), an ortholog of yeast Vps15, is mainly detected in pollen grains and pollen tubes. To determine its role in pollen development and pollen tube growth, we attempted to isolate the T-DNA insertion mutants of AtVPS15; however, homozygous lines of atvps15 were not obtained from the progeny of atvps15/+ heterozygotes. Genetic analysis revealed that the abnormal segregation is due to the failure of transmission of the atvps15 allele through pollen. Most pollen grains from the atvps15/+ genotype are viable, with normal exine structure and nuclei, but some mature pollen grains are characterized with unusual large vacuoles that are not observed in pollen grains from the wild AtVPS15 genotype. The germination ratio of pollen from the atvps15/+ genotype is about half when compared to that from the wild AtVPS15 genotype. When supplied with PI3P, in vitro pollen germination of the atvps15/+ genotype is greatly improved. Presumably, AtVPS15 functions in pollen development and germination by regulating PI3P biosynthesis in Arabidopsis
Coupled Information Diffusion–Pest Dynamics Models Predict Delayed Benefits of Farmer Cooperation in Pest Management Programs
Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' “diffusion of innovation theory”. In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations
Characterization of the Phytochelatin Synthase of Schistosoma mansoni
Treatment for schistosomiasis, which is responsible for more than 280,000 deaths annually, depends exclusively on the use of praziquantel. Millions of people are treated annually with praziquantel and drug resistant parasites are likely to evolve. In order to identify novel drug targets the Schistosoma mansoni sequence databases were queried for proteins involved in glutathione metabolism. One potential target identified was phytochelatin synthase (PCS). Phytochelatins are oligopeptides synthesized enzymatically from glutathione by PCS that sequester toxic heavy metals in many organisms. However, humans do not have a PCS gene and do not synthesize phytochelatins. In this study we have characterized the PCS of S. mansoni (SmPCS). The conserved catalytic triad of cysteine-histidine-aspartate found in PCS proteins and cysteine proteases is also found in SmPCS, as are several cysteine residues thought to be involved in heavy metal binding and enzyme activation. The SmPCS open reading frame is considerably extended at both the N- and C-termini compared to PCS from other organisms. Multiple PCS transcripts are produced from the single encoded gene by alternative splicing, resulting in both mitochondrial and cytoplasmic protein variants. Expression of SmPCS in yeast increased cadmium tolerance from less than 50 µM to more than 1,000 µM. We confirmed the function of SmPCS by identifying PCs in yeast cell extracts using HPLC-mass spectrometry. SmPCS was found to be expressed in all mammalian stages of worm development investigated. Increases in SmPCS expression were seen in ex vivo worms cultured in the presence of iron, copper, cadmium, or zinc. Collectively, these results indicate that SmPCS plays an important role in schistosome response to heavy metals and that PCS is a potential drug target for schistosomiasis treatment. This is the first characterization of a PCS from a parasitic organism
The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development
In fungi and metazoans, the SCF-type Ubiquitin protein ligases (E3s) play a critical role in cell cycle regulation by degrading negative regulators, such as cell cycle-dependent kinase inhibitors (CKIs) at the G1-to-S-phase checkpoint. Here we report that FBL17, an Arabidopsis thaliana F-box protein, is involved in cell cycle regulation during male gametogenesis. FBL17 expression is strongly enhanced in plants co-expressing E2Fa and DPa, transcription factors that promote S-phase entry. FBL17 loss-of-function mutants fail to undergo pollen mitosis II, which generates the two sperm cells in mature A. thaliana pollen. Nonetheless, the single sperm cell-like cell in fbl17 mutants is functional but will exclusively fertilize the egg cell of the female gametophyte, giving rise to an embryo that will later abort, most likely due to the lack of functional endosperm. Seed abortion can, however, be overcome by mutations in FIE, a component of the Polycomb group complex, overall resembling loss-of-function mutations in the A. thaliana cyclin-dependent kinase CDKA;1. Finally we identified ASK11, as an SKP1-like partner protein of FBL17 and discuss a possible mechanism how SCFFBL17 may regulate cell division during male gametogenesis
Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed
Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations
- …