7,460 research outputs found

    Review and prospect of supersonic business jet design

    Get PDF
    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon

    Supersonic business jet conceptual design in a multidisciplinary design analysis optimization environment

    Get PDF
    This paper introduces a multidisciplinary design analysis and optimization (MDAO) environment called GENUS, which has been developing in Cranfield University’s Aircraft Design Group. The GENUS aircraft design environment has the feature of modular, expandable, flexible, independent, sustainable, and performable. This paper discusses the application of this environment to supersonic business jets (SSBJs), which are regarded as the pioneer of the next generation of supersonic airliners. Methodologies appropriate to SSBJ are developed in the GENUS environment. Mach plane cross-sectional area is calculated based on the parametric geometry model. PANAIR is modified to do automated aerodynamic analysis. Drag coefficient is corrected by Harris wave drag calculation and form factor method. NASA EngineSim is integrated for engine modeling. Carlson simplified sonic boom prediction method has been used for sonic boom signature prediction. Results of the Cranfield E5 SSBJ are presented. Low-boom and low-drag SSBJ designs can be explored based on the framework

    Effects of lectins on calcification by vesicles isolated from aortas of cholesterol-fed rabbits

    Get PDF
    AbstractAdvanced vascular calcification in atherosclerosis weakens arterial walls, thereby imposing a serious rupturing effect. However, the mechanism of dystrophic calcification remains unknown. Although accumulating morphological and biochemical evidence reveals a role for calcifiable vesicles in plaque calcification, the mechanism of vesicle-mediated calcification has not been fully explored. To study whether vesicles’ membrane components, such as carbohydrates, may have a role in vesicle-mediated calcification, the effect of sugar-binding lectins on calcification was investigated. Atherosclerosis was developed by feeding rabbits with a diet supplemented with 0.5% cholesterol and 2% peanut oil for 4 months. Calcifiable vesicles were then isolated from thoracic aortas by collagenase digestion. The histological examination of aortas with hematoxylin counter-staining indicated abnormal formation of large plaques enriched with macrophage-derived foam cells. Fourier transform spectroscopy revealed mild calcification in aortas indicating that advanced stages of heavy calcification have yet to be reached. However, vesicles isolated from the aortas were capable of calcification in the presence of physiological levels of Ca2+, Pi, and ATP. Thus, at this stage of atherosclerosis, aortas may start to produce calcifiable vesicles, but at a level insufficient for substantial formation of mineral in aortas. The assessments by FT-IR analysis and Alizarin red staining indicated that concanavalin A (Con A) substantially increased mineral formation by isolated vesicles. Con A also exerted a marked stimulatory effect on 45Ca and 32Pi deposition in a dose-dependent fashion with a half-maximal effect at 6–10 ÎŒg/ml. Either α-methylmannoside or α-methylglucoside, but not mannitol, at 10 mM abolished the stimulation. Con A stimulation was abolished after Con A was removed from calcifying media, suggesting that covalent binding may not be involved in the effect. Galactosides appear to also be implicated in 45Ca and 32Pi deposition since Abrus precartorius agglutinin, which specifically binds galactosides, enhanced the deposition. Neither wheat-germ agglutinin that binds N-acetylglucoside nor N-acetylgalactoside-specific Helix pomatia agglutinin was effective, suggesting that the acetylated forms of carbohydrate moieties are either absent in vesicles or may not be involved in calcification. None of these lectins exerted an effect on ATPase. Thus, the effects of lectins appeared to be mediated through interactions with carbohydrate moieties of calcifiable vesicles. Whether stimulation of vesicle-calcification by lectins is of pathological significance in atherosclerotic calcification requires further investigation

    Mechanisms of calcification by vesicles isolated from atherosclerotic rabbit aortas

    Get PDF
    AbstractAlthough several lines of evidence support the role of calcifiable vesicles in dystrophic vascular calcification, the mechanisms whereby vesicles promote aortic calcification remain incompletely understood. Previous reports indicate that ATP promotes in vitro vesicle calcification. Whether ATP-initiated calcification is simply mediated through increased Pi concentrations or by other unknown mechanisms related to ATP hydrolysis is unclear. To determine whether high Pi levels resulting from ATP hydrolysis may cause Ca×P ion products to surpass the threshold for calcium phosphate precipitation, 3 mM Pi instead of 1 mM ATP was added to calcifying media. The inclusion of 1 mM ATP in calcifying media with an initial serum level of Ca2+ (1.45 mM) and Pi (2.3 mM) was much more effective in promoting calcification than the addition of 3 mM Pi. The higher effectiveness of ATP over Pi in promoting calcification was consistent throughout various incubation periods and vesicle protein ranges. To minimize the effect of Ca×Pi ion products on calcification, the ion product was kept within the physiological ranges throughout the incubation period by reducing initial Pi or ATP concentrations in calcifying media. At these low levels of ion products, ATP was still more effective than Pi in promoting calcification. Both ATP- and Pi-stimulated calcifications were found to increase with increasing levels of ion products whereas greater effectiveness of ATP over Pi remained unaltered. These observations indicate that ATP hydrolysis may initiate calcification through some mechanisms other than a simple provision of Pi in order to surpass the solubility products. Concanavalin A (Con A) was found to bind to vesicles and to enhance both ATP- and Pi-promoted calcification. Taken together, these observations suggest that ATP hydrolysis, Ca×P ion products, and vesicle-associated carbohydrates are implicated in vesicle-mediated calcification

    A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management.

    Get PDF
    OBJECTIVE:Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. MATERIALS AND METHODS:An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. RESULTS:Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application ("app"), Blip, to visualize the data. Tidepool's software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. DISCUSSION:By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. CONCLUSION:The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool's open source, cloud model for health data interoperability is applicable to other healthcare use cases

    Learning in a Multidisciplinary Collaboration: A Case Study of Digital Textile Co-design for Apparel and Interior Designers

    Get PDF
    As a wide range of emerging technologies becomes more relevant in recent years, designers today are faced with learning more untraditional knowledge and skillsets, and the challenge of complex problem solving is often more effective through multi- and/or interdisciplinary collaborations. In a collaborative design environment, the transfer of information or ideas is essential to the development of the design process and outcome. Data were collected from a collaborative design project between apparel and an interior design studio class in a southeastern US institution. The study results suggest that apparel design students experience both challenges and benefits in co-designing with interior design students. Results also reflect the effectiveness of digital 3D visualization tools (Optitex) in achieving a rewarding co-design experience in engineered print design

    Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection

    Full text link
    It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007

    GenDT: Mobile Network Drive Testing Made Efficient with Generative Modeling

    Get PDF
    • 

    corecore