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GenDT: Mobile Network Drive Testing Made Efficient with
Generative Modeling

Chuanhao Sun†, Kai Xu†, Mahesh K. Marina†, Howard Benn‡
The University of Edinburgh† Samsung‡

ABSTRACT

Drive testing continues to play a key role in mobile network opti-
mization for operators but its high cost is a big concern. Alternative
approaches like virtual drive testing (VDT) target device testing
in the lab whereas MDT or crowdsourcing based approaches are
limited by the incentives users have to participate and contribute
measurements. With the aim of augmenting drive testing and sig-
nificantly reducing its cost, we propose GenDT, a novel deep gen-
erative model that synthesizes high-fidelity time series of key radio
network key performance indicators (KPIs). The training of GenDT
relies on a relatively small amount of real-world measurement data
along with corresponding and easily accessible network and envi-
ronment context data. Through this, GenDT learns the relationship
between context and radio network KPIs as they vary over time,
and therefore trained GenDT model can subsequently be relied on
to generate time series for different KPIs for new drive test routes
(trajectories) without having to collect field measurements. GenDT
represents an initial attempt at enabling efficient drive testing via
generative modeling. Evaluations with real-world mobile network
drive testing measurement datasets from two countries demon-
strate that GenDT can synthesize significantly more dependable
data than a range of baselines. We further show that GenDT has the
potential to significantly reduce the drive testing related measure-
ment effort, and that GenDT-generated data yields similar results
to that with real data in the context of two downstream use cases –
QoE prediction and handover analysis.
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• Networks → Mobile networks; • Computing methodologies

→ Neural networks.
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1 INTRODUCTION

Drive testing has traditionally been an integral part of operatingmo-
bile networks [11, 17, 48]. A key aim of drive testing is measurement
based assessment and optimization of mobile network coverage,
capacity and quality of service (QoS). It involves collecting field
measurements in a controlled manner by driving or walking in a
target scenario. Several measurement tools are available to perform
drive or walk testing [2, 27, 29, 52]. The principal concern with
traditional drive testing is that it requires manual effort to obtain
measurements and so is costly and time-consuming.

There exist broadly two alternative approaches to reduce drive
testing cost. One approach, generally referred to as Virtual Drive
Testing (VDT) [6], is aimed at enabling device or infrastructure
equipment testing in the lab under realistic conditions. The idea
is to initially obtain a set of field measurements, as in traditional
drive testing, and then recreate the field environment in the lab
by replaying drive test scenarios and replicating field-measured
channel conditions through a hardware channel emulator. Keysight
VDT toolset [35] and Spirent Live2Lab [37] represent this approach.
This approach is obviously limited to device/equipment testing and
so does not cater to the needs of optimizing operational mobile
networks – the latter is our focus in this paper.

The other existing approach seeks to leverage measurements
from real end-user devices. From a network/operator perspective,
3GPP has introduced minimization of drive tests (MDT) feature
in Release 10 to obtain measurements from actual user devices
and enhanced it since [1, 28]. While this is an appealing approach
and has been the focus of some industry solutions and trials (e.g.,
[22, 39, 65]), users’ consent is needed for their devices to partic-
ipate in the MDT framework, especially to provide device side
context information (e.g., location) to annotate measurements. This
in turn causes the issue of sparse or skewed measurement data
with MDT [54]. On the other hand, inferring device locations on
the network side suffers from inaccuracy along with the additional
concern due to device diversity [57].

Alternatively, device side measurements can also be collected in
a crowdsourced manner via dedicated measurement apps or SDKs
(from third-party mobile analytics companies) installed on user de-
vices (e.g., OpenSignal [36], Tutela [38]). The scope and granularity
of measurements that can be gathered with such crowdsourced
solutions are limited by device OS APIs (e.g., Android Telephony
API [25]) and so they are mostly limited to coverage mapping based
on signal strength measurements [3, 19]. Crucially, the effectiveness
of both MDT and crowdsourcing based measurement approaches
are limited by the ability to provide incentives for users to partici-
pate and to safeguard their privacy.

In this paper, we introduce a new approach, termed GenDT, that
is powered by deep generative modeling for making drive testing ef-
ficient. Unlike the VDT approach [6, 35, 37], we design GenDT with
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measurement and optimization of operational mobile networks in
mind. The essential idea behind our approach in GenDT is to de-
velop a deep generative model that effectively mimics drive testing.
Traditional drive testing results in a time-series of measurements
for different radio network KPIs (e.g., RSRP, RSRQ) over a specified
measurement trajectory. Similarly, GenDT takes a trajectory as an
input and generates the time-series data for multiple radio network
KPIs corresponding to that trajectory (see Figure 5 for an illus-
tration). Note that trajectory here means a sequence of (location,
timestamp) tuples so the user/device mobility is implicitly captured
by this notion of trajectory. As our aim is to reduce the number of
measurements required with drive testing, we use readily available
network and environment ‘context’ as an aid, and train GenDT to
learn the relationship between the relevant context around a mea-
surement trajectory and the corresponding radio KPI time-series
data. For the network context, we use cell site location and config-
uration information that an operator would hold. Points of interest
(PoIs) and types of land use around the device location make up
our environment context.

Given the above, the core technical problem we target with
GenDT is conditional multivariate time-series data generation,
where the drive testing trajectory and its context make up the
condition (input) to the model to steer the data generation process,
and the output is the time-series data for multiple variables (i.e.,
radio KPIs of interest). For training the GenDT model, we leverage
a small number of controlled radio network measurements for dif-
ferent measurement scenarios (highway, city center, etc.) collected
as with traditional drive testing. Each of these measurements is an-
notated with the device location and the corresponding contextual
information. The GenDT model once trained as above can then be
relied on to generate radio network KPI time-series data for a new
unseen drive test trajectory without having to collect field mea-
surements, by simply providing the trajectory and its surrounding
context as input to the model.

Realizing the GenDT approach as outlined above poses a signif-
icant challenge. On one hand, GenDT should be able to generate
high-fidelity (dependable) KPI time-series data for new unseen tra-
jectories (i.e., generalize well). On the other hand, GenDT should
rely on minimal amount of measurement data for training. Address-
ing this challenge entails tackling a number of issues in turn: (i)
Dynamic context input: the relevant context keeps changing as the
device moves along the drive testing trajectory. This includes not
only the immediate environment but also the number and the actual
set of potential serving cells around the device location; (ii) Long and
complex scenarios: drive testing trajectories can be arbitrarily long
which means the model should be able to generate correspondingly
long time series of radio KPIs without loss of fidelity. Moreover,
real-world drive testing trajectories can be complex spanning sev-
eral different measurement scenarios (highway, city center, etc.);
(iii) Stochasticity: radio network KPIs are inherently stochastic and
so the generated data should preserve this characteristic by having
the distribution of synthesized data aligning with real measurement
data; (iv) Minimal training data: the model should provide insights
to optimize the amount of training data needed while ensuring high
fidelity so as to strike the right balance between dependability and
measurement efficiency.

In GenDT, we address (i) via a tailored Graph Neural Network
(GNN) [5] based LSTM network component, where a node level
network is used to map the time-varying cell information context
into a high-dimensional graph; this then feeds into another aggre-
gation network to learn the graph level information and output a
multichannel time-series output, where each channel of the output
represents a different radio network KPI. We tackle (ii) with a batch
generation mechanism – the training and generation is done at a
smaller batch level to preserve temporal patterns and improved
training efficiency. We address (iii) by introducing a stochastic layer
in the LSTM network and adversarial training for effectively mod-
eling the stochastic nature of radio KPIs. Finally to address (iv), we
incorporate a residual generation component in the model whose
parameters give hints on model versus data uncertainty, thereby
help achieve high fidelity with minimal training data.

We evaluate the GenDT with respect to a range of baseline ap-
proaches, using two real-world drive testing measurement datasets
from two different countries. We not only assess the fidelity of the
data generated with GenDT relative to baselines but also highlight
its ability to achieve high fidelity with minimal amount of training
data – the latter translates to greater measurement efficiency to
benefit drive testing. All our evaluations are over the testing subset
of each of the datasets that is non-overlapping with the part used for
training. As such, we demonstrate the ability of GenDT to general-
ize to new unseen trajectories. We also present evaluations showing
the effectiveness of GenDT in supporting downstream use cases
as well as an ablation study to evaluate design choices underlying
GenDT. In summary, we make the following key contributions:
• (§3) We first present an analysis of drive testing measurement
data characteristics that motivate our model design.

• (§4) We propose a novel conditional deep generative model,
GenDT, featuring several new innovations. To the best of our
knowledge, GenDT is the first method for synthesizing depend-
able radio KPI time series data and as such the first step towards
enabling efficient drive testing via generative modeling.

• (§6.1) Using real-world drive testing measurement datasets from
two countries, we show that GenDT synthesizes realistic time
series for multiple key radio network KPIs for new unseen tra-
jectories and generally outperforms all baselines.

• (§6.2) Crucially, we demonstrate the potential of GenDT to re-
duce the measurement effort with drive testing by leveraging the
model uncertainty measure within GenDT– it maintains high
fidelity for long and complex trajectories using as little as 10%
of the available data, or equivalently yield 90% measurement
efficiency.

• (§6.3) Moreover, we demonstrate the utility of GenDT for down-
stream applications through two distinct use cases, showing that
using data generated by GenDT yields results comparable to
those obtained using real drive test measurements.

2 BACKGROUND

2.1 Related Work

Our work is positioned in the context of mobile network drive test-
ing and is aimed at reducing its cost associated with measurement
data collection. As stated at the outset, the VDT approach [6, 35, 37]
is limited to device/equipment testing and so is unsuitable for this
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purpose. The other alternative approaches involving user device
based measurement collection via MDT [1, 28, 54] or crowdsourc-
ing [3, 19, 36, 38] are hindered by insufficient incentives and privacy
concerns. To the best of our knowledge, our work is the first to
explore the generative modeling approach towards making drive
testing efficient and cost effective.

Broadly related are the works focusing on coverage mapping
and pathloss prediction, which can be seen as a subset of drive
testing use cases. In contrast to traditional methods including ray-
tracing [43], recent work (e.g., [3, 19, 57, 61]) has adopted statistical
and machine learning approaches for measurement or computa-
tional efficiency. Alimpertis et al. [3] propose a random forests
based model for prediction of signal strength (RSRP) map, whereas
Thrane et al. [57] present a convolutional neural network (CNN)
based supervised spatial regressionmodel that maps satellite images
of a target region to signal quality parameters like RSRP and RSRQ
in that region. On the other hand, [61] focuses on pathloss pre-
diction using multi-layer perceptron (MLP) based neural network
model. The above mentioned works cannot mimic measurements
with drive testing as they do not have a notion of user trajectory or
temporal variations. They also make a simplifying but inaccurate
assumption that serving cell at each location is fixed and known.
Moreover, the model in [57] due to being trained with satellite
images for a specific region does not generalize beyond that region.
In contrast, our proposed GenDT approach overcomes the above
limitations through a tailored and novel deep generative model.

Our design of GenDT leverages graph neural networks (GNNs) [5]
to effectively handle varying network context around a drive testing
trajectory. While there have been some recent works employing
GNNs for time-series prediction problems (e.g., [32, 58]), to our
knowledge, ours is the first work on GNN based time-series data
‘generation’. As noted in prior work [62], data generation is a much
harder task than prediction. We comparatively evaluate our model
with the LSTM-GNN model [58].

Using deep generative models, especially generative adversarial
networks (GANs) and variational autoencoders (VAEs), for data
synthesis is of prime interest currently [34]. Such models are being
used to generate data for machine learning, in finance, healthcare
and other domains. Within the mobile networking domain, there
have been few recent works proposing deep generative models for
various types of network and wireless data. The potential for GANs
to generate physical layer channel response samples for MIMO
channels has been discussed in [63]. SpectraGAN [62] is another
broadly related work in this domain that targets the generation of
spatiotemporal mobile traffic data. Unlike our setting, mobile traffic
data has certain unique properties such as ‘recurring’ patterns that
are exploited in SpectraGAN for effective data generation.

Works on multivariate time-series synthesis in general are re-
lated given our problem involves generating time-series data for
multiple radio network KPIs. Existing work [10, 30, 31], however,
targets very different problems from ours. For instance, in [30], an
unconditional GAN based multivariate time-series synthesis model
is introduced to generate data for resource utilization measurement
of CDN caches whereas we target a conditional data generation
problem. As another example, Chen et al. [10] focus on mitigating
the severe class imbalance in the data for predicting rare events
(e.g., solar flares).

Among these works, DoppelGANger (DG) [31] is a more closely
related work that is aimed at unconditional GAN based generation
of multivariate time-series data for networks and systems (e.g.,
Wikipedia article views over time, network monitoring data over
time, resource usage in compute clusters). In §B, we provide a
detailed discussion on the suitability of DG design to our drive
testing data generation problem, along with its limitations with
respect to GenDT. In our evaluations, we compare GenDT with the
original DG design and an optimized variant, as elaborated in §5.2.

2.2 Representative Radio Network KPIs

Drive testing involves measuring a number of different radio net-
work KPIs. Here we outline a representative set of key LTE radio
network KPIs [53] that we target in GenDT.

Reference Signal Received Power (RSRP) is the average
power received from a single reference signal. It typically ranges
between -44 dBm (good) and -140 dBm (bad). RSRP is related to
another KPI called Received Signal Strength Indicator (RSSI), which
represents the total received power from the serving cell, co-channel
cells and other sources of noise:

𝑅𝑆𝑅𝑃 (𝑑𝐵𝑚) = 𝑅𝑆𝑆𝐼 (𝑑𝐵𝑚) − 10 × log(12𝑁𝑅𝐵 )

where 𝑁𝑅𝐵 is the number of resource blocks.
Reference Signal Received Quality (RSRQ) indicates the

quality of the received signal and typically ranges from -19.5dB
(bad) to -3dB (good). RSRQ is related to the above mentioned KPIs,
as follows:

𝑅𝑆𝑅𝑄 (𝑑𝐵) = 𝑁𝑅𝐵

(
𝑅𝑆𝑅𝑃 (𝑑𝐵𝑚) ÷ 𝑅𝑆𝑆𝐼 (𝑑𝐵𝑚)

)
Based on the above, given any two of RSRP, RSRQ and RSSI, we can
obtain the third.We focus on RSRP and RSRQ given their central role
in influencing handover decisions for mobility management [51].

Signal to Interference plus Noise Ratio (SINR) is a key deter-
minant of the received data rate. It is related to the transmit power,
pathloss and interference.

Channel Quality Indicator (CQI) is a key KPI that is related to
SINR, and is used for downlink resource scheduling and link adap-
tation, including the choice of modulation and coding scheme [12].
It takes discrete values between 1 and 15.

Although the above set of KPIs are a subset of KPIs considered
for drive testing measurements [1], they are an essential subset as
discussed above and so are sufficient to highlight the potential of
the proposed GenDT approach. We leave the extension of GenDT
to cover additional KPIs for future work.
2.3 Measurement and Context Data

For our analysis and evaluation, we use two real-world mobile
network measurement datasets from two different countries, both
obtained through a drive testing like process. We also compile
corresponding network and environment context data from public
sources.

2.3.1 Dataset A. We collected this dataset through first-hand mea-
surements using Nemo Handy [26], a commercial drive testing tool,
mostly in and around a city center area in country A. The Nemo
Handy tool allows measurement of a comprehensive set of radio
network KPIs at a consistent and fine time granularity of 1s. These
measurements were obtained using a custom Samsung S20 device
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Walk Bus Tram

Time Granularity 1s 1s 1s
Avg. Velocity (m/s) 1.4 5.6 11.5
Avg. Duration at each Serving Cell (s) 80.5 49.5 43.42
Avg. RSRP (dBm) -86.6 -87.3 -85.6
Std. RSRP (dBm) 9.9 10.7 10.0
Avg. RSRQ (dB) -14.4 -12.9 -13.3
Std. RSRQ (dB) 2.1 2.2 2.1
Measurement Samples (s) 15245 13890 14198

Table 1: Statistics of Dataset A for different scenarios.

City Driving 1 City Driving 2 Highway 1 Highway 2

Time Granularity 3.8 3.5 2.1 2.3
Avg. Velocity (m/s) 9.1 9.8 26.7 31.1
Avg. Duration at each Serving Cell (s) 31.4 27.3 22.0 22.2
Avg. RSRP (dBm) -84.6 -85.0 -86.5 -84.1
Std. RSRP (dBm) 8.8 7.1 10.5 10.2
ROC RSRP (dBm) 0.95 0.83 1.11 1.03
Avg. RSRQ (dB) -9.5 -10.6 -8.7 -8.5
Std. RSRQ (dB) 2.0 2.5 2.2 1.9
ROC RSRQ (dB) 0.36 0.41 0.38 0.31
Sample Num. 2.1 × 104 2.3 × 104 3.9 × 104 4.6 × 104

Table 2: Statistics of Dataset B for different scenarios.

with Nemo Handy installed. There are other studies in the litera-
ture that have reported measurements obtained using this tool (e.g.,
[16, 47]). Table 1 provides a summary of this dataset.

2.3.2 Dataset B. This is a publicly available measurement dataset
provided by the authors of [55, 56]. It covers a much wider geo-
graphical region than Dataset A. Specifically it is centered around
the city of Dortmund in Germany and spans to nearby cities, includ-
ing Bonn, Cologne and Hamm. It consists of measurements taken
at campus, suburban, urban, and highway areas. This dataset was
collected using a custom Android app [23] accessing the Telephony
API [25] on commodity Android phones. It is known that with this
API the measurement granularity is coarser around 5s and varies
across chipsets. We focus on measurements collected using One
Plus 8 devices as they cover the largest area. Table 2 provides a
summary of this dataset. Here ROC refers to “rate of change”, i.e.,
the first-order derivative of the corresponding KPI.

2.3.3 Network Context: Cell Information. For each measurement
location in the above two datasets, we treat the corresponding cell
deployment information as the network context. Specifically, we
consider the cell site location, estimated transmit power and cell
orientation for each cell within a certain range around the device
measurement location, as such cells are seen as potential serving
cells. See Figure 3 for an illustration1. We discuss the setting of
this range around the device in the next section. We obtain the cell
site location and configuration information from CellMapper [8], a
non-profit crowd sourced cell information dataset2.

2.3.4 Environment Context. The radio network KPI data charac-
teristics are not only dependent on the network context described
above but also on the environment around the device (terrain, ob-
stacles, etc.). So we additionally consider the environment context,
which in our case is represented by a set of 26 attributes (see Ta-
ble 11 in Appendix A.1). These attributes are obtained from public
sources and broadly fall into two categories: (1) land use type from
1Here arrows indicate the sector and direction of each cell, i.e., each cell covers the
direction between two arrows (< 180◦). Dashed circle shows the furthest distance
of a serving cell from the device. Cells within that range are shown in red circles.
Unavailable cells beyond that range are shown as grey circles.
2Note that in practice, this information would be directly available to an operator
employing our GenDT approach.
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Copernicus Urban Atlas repository [4]; and (2) points of interest
(PoIs) from the OpenStreetMap (OSM) using the Overpass API [41].
Specifically, the value of all these attributes, centered at and within
a small radius (set to 500𝑚 in this paper) of the device location,
are taken together as the environment context. For the land use
attributes, we use the percentage area of each land use type around
the device as its value. For PoI attributes, we use the number of each
PoI around the device as its value. Clearly, like the network context,
the environment context also changes with the device location.

3 ANALYSIS OF DATA CHARACTERISTICS

Here we present a short analysis of drive test measurement data
characteristics pertinent to our model design in §4.

Stochasticity of radio network KPI data. Figure 1 shows five mea-
surements of RSRP time series taken over the same trajectory on
the tram in Dataset A around the same time and on the same
day. Measurement locations are aligned across the different time
series. We see significant variations between the measurements at
most locations. This shows that radio network KPI data is far from
deterministic, which motivates the need for a generative model
capable of modeling this stochasticity as opposed to using predic-
tion/regression models. The high level of variation of a radio KPI
(RSRP in this case) at any given location is partly due to serving
cell changes. Figure 2 shows the serving cell ID corresponding to
the measurement data in Figure 1. We observe that in locations
with high degree of RSRP variations, there are also a wide range
of serving cells. This suggests that assumption of serving cell at a
given location is fixed and known made in prior work (e.g., [3, 57])
does not hold in practice.

Distance to Serving Cell. From Figure 16, we observe that distri-
butions of distance to primary serving cell are as per intuition –
slow mobility (e.g., walking) or inner city (e.g., city center cases in
Dataset B) have serving cells that are relatively closer. Yet, there is
considerable degree of variation in distance to serving cells within
and across scenarios. A direct implication of this observation for
our purpose of generating radio KPI time series data conditioned
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of drive testing data.

on relevant context is that the scope of the cell information context
should reflect this wide diversity in order to be effective across
different scenarios. For some of the scenarios, we also observe a
substantial percentage of cells within almost zero distance from
the device location. This reflects a common phenomenon in dense
city center areas where users may pass by cells within a few meters
distance and there may also be multiple cells that a user device
could associate with. Also note that these plots show only the 2D
distance between the device and cell site locations.

Figure 4 shows the cell density differences across different sce-
narios3. These results also follow intuition indicating that high
mobility scenarios tend to experience lower density of cells com-
pared to inner city and slow mobility cases. Significant diversity
across scenarios highlighted in Figure 16 and Figure 4 emphasize the
difficulty associated with generating radio KPI data for all scenarios
using a single model. Though challenging, addressing this chal-
lenge is important to make drive testing efficient considering that
trajectories of interest in practice span multiple different scenarios.
4 GENDT

4.1 Problem Statement

As stated at the outset, we aim at faithfully mimicking drive testing
through a data generation model to reduce the need for collection
of field measurements. This goal translates to generating time-
series data for different radio KPIs corresponding to an input drive
testing trajectory, as would be the case with traditional drive test-
ing. Figure 5 illustrates the problem we target and our proposed
approach to resolve it through the GenDT model. Note that this
schematic depicts the operational process once the GenDT model is
trained; we discuss the model training aspect shortly. The process
starts with providing an input trajectory (Figure 5:Input), which
is a timestamped sequence of locations for the user device (repre-
sented in [Latitude, Longitude] format). Then the network context
(Figure 5: 1○ as described in §2.3.3) and environment context (Fig-
ure 5: 2○ as described in §2.3.4) corresponding to each timestamp
in the input trajectory are consolidated into a series of context
snapshots (Figure 5: 3○), each including the user device (UE) loca-
tion at the snapshot’s timestamp. This context annotated trajectory
together with noise makes up the input to the trained GenDT data
generation model ((Figure 5: 4○), which outputs time-series data
for different radio KPIs. Here context (Figure 5: 3○) serves as con-
ditioning input to the generator, whereas noise represents factors

3Dataset A: Case 1 – Walking, Case 2 – Bus, Case 3 – Tram; Dataset B: Case 4 –
City Center 1, Case 5 – City Center 2, Case 6 – Highway 1, Case 7 – Highway 2.

unaccounted for in the context for the data generation process such
as cell load as well as statistical variation. In the training phase
that precedes the generation/operational phase outlined above, the
model is trained using a small set of real drive testing measurement
data. The training follows the same pipeline as in Figure 5 except
that the model is updated based on the divergence between real
and generated data.

Resolving the above outlined problem for high-fidelity and gener-
alizable radio KPI time-series data synthesis with minimal training
data is a significant challenge. A number of issues have to be ad-
dressed as part of tackling this challenge: (1) context input varies
over time with device location; (2) drive testing trajectories can be
arbitrarily long and complex spanning multiple different scenarios
(city center, highway, etc.); (3) considering the inherent stochas-
ticity of the radio KPI data, generated KPI data should match the
distribution of the real data; (4) all of the above needs to be achieved
with minimal amount of training data to achieve our intended goal
of efficient drive testing.
4.2 Overview of Proposed Solution

Motivated by the above, we propose an original conditional deep
generative model, GenDT, that addresses the aforementioned chal-
lenge and issues. Specifically, the issue (1) is addressed via a tai-
lored GNN based time-series model, together with customized data
processing, training method, and hyper-parameter tuning, as elab-
orated in this and the next subsection. Broadly speaking, the gen-
eration of time series data for different radio KPIs in GenDT is
done in two steps, as elaborated in §4.3.1. The first step genera-
tion is conditioned on the network context (cell information). Then
the environment effect is added on through a residual generator
component (§4.3.2). We address (2) through batch training and gen-
eration (§4.3.3) that enables effective long time-series generation
and training efficiency. We tackle (3) through a combination of
mechanisms: noise in the input, adding stochastic layers in the
different neural network components of the generator (§4.3.4) and
through adversarial training (à la GANs). To address issue (4), we
leverage the learned parameters of the residual generator model,
whose variation offers insight on the extent to which additional
training data will help improve model fidelity.

Formally, the target output of our generationmodel is to generate
time-series data for 𝑁𝑐ℎ different radio KPIs (e.g., RSRP, RSRQ) over
a given time period 𝑇 : 𝑥 ′1:𝑇,𝑖 = [𝑥 ′1, . . . , 𝑥

′
𝑇
]𝑖 ∈ R𝑇 , 𝑖 ∈ [1, · · · , 𝑁𝑐ℎ].

Here 𝑁𝑐ℎ can be viewed as different ‘channels’ of the model output.
The generated series 𝑥 ′1:𝑇,𝑖 should exhibit high fidelity with respect
to the corresponding true series: 𝑥1:𝑇,𝑖 = [𝑥1, . . . , 𝑥𝑇 ]𝑖 ∈ R𝑇 , 𝑖 ∈
[1, · · · , 𝑁𝑐ℎ]. The whole multivariate time series data 𝑥 ′1:𝑇,𝑖 can
be generated in one shot but at the risk of compromising fidelity,
especially when 𝑇 is long. So we employ generation in smaller
batches, each of length 𝐿. As such, the generated series can be seen
as a sequence of ⌊𝑇

𝐿
⌋ batches.

The above data generation is conditioned on context 𝑐 . As such,
𝑐 serves as an input to the model. As noted earlier, overall context
𝑐 is made up of network and environment context. The network
context in each batch 𝑏 is dependent on the set of potential serving
(visible) cells over the course of the batch’s duration (i.e., 𝐿). As per
the analysis in §3, we consider cells within a certain distance 𝑑𝑠 of
the user location as the relevant network context. The value of 𝑑𝑠 is
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Figure 6: Schematic of GenDT generator architecture, labeled

with input and output dimensions for each component.

dependent on the scenario. For example, in Dataset B, we find that
serving cells are within 2 km’s within the city and within 4 km’s on
highways. We note that empirically and conservatively setting 𝑑𝑠
to a higher value is sufficient for GenDT, although an unnecessarily
high value increases the computation time for training.

We use Ccell,𝑏 (𝑁𝑏 ) to denote the set (number) of cells consid-
ered for the network context in a particular batch 𝑏. Note that by
considering the set of potential serving cells instead of a specific
one, we account for the fact that serving cells keep changing over
time, as observed in §3. For each cell 𝑖 in the set Ccell,𝑏 , we con-
sider 𝑁𝑐 attributes. In this paper, we specifically consider 𝑁𝑐=5 at-
tributes per cell: 𝑐cell,𝑖,𝑏 = [lat𝑖 , lon𝑖 , 𝑝max,𝑖 , direction𝑖 , distance𝑖,𝑡 ].
Here the first four are as previously described in §2.3.3. Specifi-
cally, lat𝑖 and lon𝑖 refer to the location of cell 𝑖 , whereas 𝑝max,𝑖
and direction𝑖 respectively refer to the max transmit power and
direction of cell 𝑖 . The distance𝑖,𝑡 represents the distance to cell 𝑖
from the user location in time stamp 𝑡 . By using this distance at-
tribute, we implicitly account for the time-varying device location.
Based on the above, the network context information in batch 𝑏 is
Ccell,𝑏 = {𝑐cell,𝑖,𝑏 }, 𝑐cell,𝑖,𝑏 ∈ R𝐿×𝑁𝑐 and 𝑖 = 1, . . . , 𝑁𝑏 .

Besides the network context, we also consider the environment
context as described earlier in §2.3.4. Specifically, we denote the
environment context in batch 𝑏 using 𝑐env,𝑏 ∈ R𝐿×𝑁𝑔 , where 𝑁𝑔
(= 26 in our case) represents the number of attributes considered
for the environment context. Based on the above, the overall input
context to our model for each batch 𝑏 is 𝑐𝑏 = {Ccell,𝑏 , 𝑐env,𝑏 }.

We take a data-driven approach, and accordingly design a para-
metric model 𝑝𝜃 (𝑥1:𝑇 |𝑐) with parameter 𝜃 and fit themodel on train-
ing data D. Specifically, given training data consisting of ground-
truth multi-KPI time series from 𝑀 drive test measurements, i.e.,
D = [𝑥𝑘1 , . . . , 𝑥

𝑘
𝑇
]𝑖 ∈ R𝑇 , 𝑖 ∈ [1, · · · , 𝑁𝑐ℎ], 𝑘 ∈ [1, .., 𝑀], and corre-

sponding context data 𝑐 , we fit 𝜃 onD by finding 𝜃∗ that minimizes
the divergence 𝐷 between the data distribution 𝑝D and the model
𝑝𝜃 , i.e., 𝜃∗ = argmin𝜃 𝐷 (𝑝D , 𝑝𝜃 ). Depending on the specific train-
ing methods, different divergence criteria (𝐷) can be considered.
Once trained, we can draw samples from the model 𝑝𝜃 for a new
target trajectory 𝑛 with context 𝑐𝑛 as input to generate the data
𝑥 ′𝑛1:𝑇,𝑖 for that trajectory, as illustrated in Figure 5. Note that the
training and generation process in GenDT is actually done at the
batch level as outlined above and elaborated later in §4.3.3. Also
note that although real world scenario characteristics can be quite
different from one another (e.g., cell density differences shown in
§3) and a target trajectory may span multiple different scenarios,
our model does not need to explicitly consider the myriad of pos-
sible scenarios. This allows us to use one single model for any
scenario(s).

FC

Env. 
Context [Xt-m,…,Xt-1]   Nch 

LeakyReLU
FC

LeakyReLU
FC

LeakyReLU
Dropout

FC
Gaussian Distribution

Residual

x

x Nch

Z1
NoiseInput

learn μ��Ǒ

Figure 7: Illustration of ResGen network architecture and

the generation of distribution parameters (FC: Fully Con-

nected Layer, LeakyReLU: Leaky Rectified Linear Unit).

4.3 Detailed Model Design

4.3.1 Generator. As illustrated in Figure 6, our conditional neural
sampler 𝑝𝜃 has three main neural network components: 1) a GNN
node network 𝐺𝑛

𝜃
that does convolution operation over network

context (cell level information) time series; 2) an aggregation net-
work 𝐺𝑎

𝜃
to process the temporal graph after the convolution; 3) a

residual generator (ResGen)𝐺𝑟
𝜃
that accounts for the environmen-

tal effects to model the ‘residual’ and adds it to the output of the
aggregation network. All these three components operate at the
batch level.
• 𝐺𝑛

𝜃
: R𝐿×(𝑁𝑐+𝑁𝑧0 )×1 → R𝐿×𝐻×𝑁𝑐ℎ , where 𝑁𝑧0 is the dimension

of the input noise and 𝑁𝑐ℎ is number of target KPIs. We use a
multi-channel LSTM for generation of multiple KPI time series,
all together. To make sure the GNN node LSTM network does
not have a bottleneck effect, we set the hidden dimension size
𝐻 >> 𝑁𝑐 . Based on our empirical insights, we set 𝐻 = 100,
which we find to achieve the right balance between convergence
efficiency and training performance. The additive input noise
𝑧0 on the GNN-node network is not for introducing statistical
variation but rather to help the model learn a de-noise behavior
and avoid over-fitting [60]; this eases the training process and
makes it robust.

• 𝐺𝑎
𝜃
: R𝐿×𝐻×𝑁𝑐ℎ → R𝐿×1×𝑁𝑐ℎ . The input ℎ𝑎𝑣𝑔 to 𝐺𝑎

𝜃
, is the high

dimensional representation of the input graph. We take the aver-
age of the hidden representation of all cells as the input graph

level representation, i.e., ℎ𝑎𝑣𝑔 =

∑𝑁𝑏
𝑖=1 ℎ𝑖
𝑁𝑏

. The aggregation net-
work has the similar structure as the GNN-node network. Both
are based on LSTM and only differ in dimensions and number of
input-output channels.

• 𝐺𝑟
𝜃
: R𝐿×(𝑁𝑔+𝑁𝑧1 ) → R𝐿×1×𝑁𝑐ℎ , where 𝑁𝑧1 is the dimension

of the input noise. The 𝑁𝑔 environment context attributes are
concatenated with the noise as input. The output of 𝐺𝑟

𝜃
has the

same dimensions as𝐺𝑎
𝜃
as they are added together to produce the

generator’s final output. This component is elaborated further
in §4.3.2.

4.3.2 ResGen. The network context driving the first two compo-
nents GenDT generator architecture (Figure 6) helps model the
effect of cell deployment and configuration on radio network KPI
dynamics but that by itself is insufficient. Environment (terrain,
obstacles, etc.) has an equally important effect on radio KPI be-
havior. Crucially, the complexity of the environment determines
the cost of drive testing (required number of measurements) in
practice, as previously noted in [57]. So we design the third compo-
nent of GenDT generator𝐺𝑟

𝜃
termed ResGen (Figure 7) to model
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the environment effect, and crucially also to get cues on the need
for additional training data. ResGen complements the other two
components in that its output (referred to as ‘residual’) is added to
the output of the aggregation network to generate the final output
time-series data for the target radio KPIs.

In ResGen, we model the residual for each timestamp with a
parametric Gaussian distribution, conditioned on the environment
context (𝑐𝑒𝑛𝑣,𝑡 ∈ R1×𝑁𝑔 ), noise 𝑧1 and the recent values of radio
KPI time-series data. The latter is real (generated) data during train-
ing (generation) phase of GenDT, and importantly makes ResGen
an auto-regressive model with temporal pattern learning capa-
bility [14]. The noise input is sampled from a standard Gaussian
distribution to represent the unaccounted contextual information
and also for capturing statistical variation. We observe that simply
using a noise input is insufficient to model the required variation
on the output. Hence, we use a dropout layer [21] before the final
layer of ResGen. Once trained, we sample the Gaussian distribution
𝑁 (𝜇𝜃,𝑡 , 𝜎𝜃,𝑡 ) to obtain the residual, where mean 𝜇𝜃 and standard
deviation 𝜎𝜃 are the learned distribution parameters.

Characteristics of the parameters [𝜇𝜃 , 𝜎𝜃 ] can be leveraged to
guide the training process. They allow distinguishing between
‘model uncertainty’ and ‘data uncertainty’. If the parameters [𝜇𝜃 , 𝜎𝜃 ]
themselves exhibit a high degree of variation during the training
process, then that suggests model uncertainty and the need for
more training data to stabilize these parameters. On the other hand,
if the 𝜎𝜃 has a stable but large value then that indicates that the
underlying data being modeled itself has a high degree of variation
and so model is not the limitation. Our target is to reduce the model
uncertainty using minimal amount of training data and accordingly
we leverage the above insight to that end.

4.3.3 Batch Training and Generation. In GenDT, instead of han-
dling the whole radio KPI time series from training input or target
output all in one shot, we do that in small steps called batches. We
employ such a batch based training and generation approach for
the following reasons:
• Long series generation: The time series of radio KPI measure-
ments with drive testing can be quite long. We thus need to be
able to generate similarly long time series but doing that in one
shot risks fidelity. It is known that learning to generate long
time series data at high fidelity with recurrent neural networks
(RNNs), including its widely used LSTM variant, is hard [31]. So
we turn the learning task of synthesizing arbitrary length series
into two sub-tasks that are easier to be handle with a LSTM-based
architecture: 1) learning short-term temporal correlations within
each batch; 2) capturing long-term temporal correlations across
batches.

• Training efficiency: With conditional generative models, oper-
ating at the batch level has a weight-sharing effect among batches
and so enhances learning efficiency.

• Computational efficiency: With batch training and genera-
tion, we only need to consider context input at the batch level,
which makes the processing of input more efficient compared to
treating the whole time series at once.
Concretely, we view the whole training input and target output

time series for each KPI as a sequence of batches, each of length 𝐿:
𝑥1:𝑇 −→ {𝑥1:1+𝐿, 𝑥1+Δ𝑡 :1+Δ𝑡+𝐿, . . . , 𝑥1+⌊ 𝑇

𝐿
⌋Δ𝑡 :𝑇 }
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Figure 8: (a) Training with overlapping batches; (b) Stochas-

tic layers of LSTM in GNN-Node Network and Aggregation

Network components of GenDT.

where Δ𝑡 is the step length of the sliding window, which allows
different forms of batching. During the training phase, we allow the
batches to be overlapping (as illustrated in Figure 8a) to additionally
optimize the training efficiency. On the other hand, for generation,
we use non-overlapping batches (i.e., Δ𝑡 = 𝐿) to ensure that there
are no smoothing artifacts introduced in the output and that the
desired statistical variation is not compromised.

4.3.4 Stochastic Layers. The inherently and highly stochastic na-
ture of radio KPI data (even at the same location) needs special
attention to model this characteristic, especially in the generator
part driven by the dynamic network context. We find that straight-
forward approaches to introducing noise such as injecting noise
directly in the input or using a FiLM layer [42] are ineffective in
our setting. So we employ a variant of the Stochastic RNN (SRNN)
method [20] to efficiently propagate uncertainty in a latent state
representation with RNNs. Specifically, we use stochastic layers in
the LSTM structures of both GNN-node and aggregation networks.
As illustrated in Figure 8b4, we introduce noise to memories (𝑐𝑡 )
and hidden states (ℎ𝑡 ), where the noise is added just before each
iteration. The noise modulated versions of hidden state and mem-
ory are respectively ℎ′𝑡 = 𝑓𝑛 (ℎ𝑡 , 𝑛𝑡,ℎ, 𝑎ℎ) and 𝑐′𝑡 = 𝑓𝑛 (𝑐𝑡 , 𝑛𝑡,𝑐 , 𝑎𝑐 ),
where 𝑓𝑛 is a function to control the intensity of noise input, and
the intensity of noise added to hidden state ℎ and 𝑐 are controlled
by 𝑎ℎ and 𝑎𝑐 , respectively. We assume that the noise has an uniform
distribution between [0, ℎ̂𝑡 ] and [0, 𝑐𝑡 ], where ℎ̂𝑡 and 𝑐𝑡 represent
the average value of ℎ𝑡 and 𝑐𝑡 of all hidden dimensions, so that
the noise adapts to the hidden state values. Unlike the variational
inference based learning used in [20], we use an adversarial training
method with a discriminator. See Appendix A.2 for further details.

4.3.5 Training. . Following the standard GAN formulations [13],
we train the model by minimizing Jensen-Shannon divergence, i.e.,
𝜃∗ = argmin𝜃 𝐽𝑆 [𝑝D | |𝑝𝜃 ], and with the aid of discriminator as in
the GAN framework. We denote such discriminator as 𝑅 due to
their role as density ratio estimators [59]. Specifically, for given
training input measurement data time series and context batch
(𝑥, 𝑐), the corresponding adversarial loss between the data 𝑝D (𝑥, 𝑐)
distribution and the model 𝑝𝜃 (𝑥, 𝑐) distribution is defined as:

L𝑅
𝐽 𝑆 (𝑝D , 𝑝𝜃 ) = 𝐸𝑝D [log𝑅(𝑥, 𝑐)] + 𝐸𝑝𝜃 [log(1 − 𝑅(𝑥 ′, 𝑐))] .

In our case, we consider one discriminator, named as 𝑅𝜃 , the context
input into discriminator is the high dimensional representation of
𝑐 , which is ℎ𝑎𝑣𝑔 . The discriminator is a single layer LSTM network.

We additionally use the standard mean squared error loss:

4Here we show for one radio KPI (channel) case but the same applies for all channels.
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L𝑀 (𝑥, 𝑥 ′ |𝑐) = 1
𝐿

𝐿∑︁
𝑡=1

(𝑥𝑡 − 𝑥
′
𝑡 )
2

Since the batch length 𝐿 is constant during training, this loss has
an equivalent effect to using 𝐿2 loss.

Overall, together with the adversarial (GAN) loss, the loss func-
tion to fit 𝜃 is: L = L𝑀 + 𝜆L𝑅

𝐽 𝑆

where the 𝜆 is a weight to balance the effect of adversarial loss,
which in our case is set as 𝜆 = 0.1 by default. Appendix A.3 elabo-
rates on the setting of hyper-parameters.
5 EVALUATION METHODOLOGY

Broadly speaking, we evaluate GenDT in two ways. First, we assess
the fidelity of the GenDT generated radio KPI time series data with
respect to real measurement data usingmultiple differentmetrics de-
scribed in §5.1 and in comparison with various baseline approaches
outlined in §5.2. Second, we evaluate GenDT through two different
downstream use cases and show that GenDT generated data is a
dependable substitute for real drive testing measurement data to
support such use cases.
5.1 Metrics

Mean Absolute Error (MAE) for any given KPI between its real
measurement data time series (𝑥 : {𝑥1, 𝑥2, . . . , 𝑥𝑇 }) and generated
time series (𝑦 : {𝑦1, 𝑦2, . . . , 𝑦𝑇 }) is calculated as:𝑀𝐴𝐸 =

∑𝑇
𝑖=1 |𝑦𝑖 −

𝑥𝑖 |/𝑛. As such, it is a natural measure for evaluating fidelity of
GenDT and alternative approaches.

Dynamic Time Warping (DTW) [7] is an alternative metric
to MAE for assessing the similarity between two time series (real
and generated in our setting). The main feature of this distance
measure is that it allows to recognize similar shapes between two
time-series signals, even if they need signal transformations such as
shifting and/or scaling. As such, it provides a more robust similarity
measure. Events like accessing a specific cell or going around the
same location have a similar effect on the temporal pattern of KPIs
across different measurement trajectories, though with slight time
shift due to differences in user device path and velocity each time.
DTW is better at identifying such similarity, as the other distance
metrics are too sensitive to temporal shifts. Hence, the DTW is very
useful in capturing real world performance, especially when used
in conjunction with MAE, as we do.

HistogramWasserstein Distance (HWD). Besides having the
generated time series of different radio KPIs matching with their
corresponding ground-truth time series (as quantified by the MAE
and DTW metrics), we would also want the generated data for any
target KPI to have the same distribution (histogram) as the real
data. Rather than limiting the comparison of histograms of real
and generated data to just visualization, we quantify the similarity
between these histograms by computing their Wasserstein Dis-
tance (WD) [49] and call this metric as the Histogram Wasserstein
Distance (HWD).

Measurement Efficiency. While fidelity of the generated data
along different aspects as quantified by the above metrics is impor-
tant, the required amount of training data to achieve that fidelity is
equally important. Lower the training data needed the better as it
demonstrates the cost reduction and efficiency improvement that
GenDT can provide, aligned with the motivation behind its design.
As different scenarios involve different movement speeds, lengths

of trajectories included in the training data in terms of distance are
not representative. We therefore factor in speed in trajectories and
consider data used for training in terms of time (∼distance/speed).
Specifically, we use the percentage of the available data in a dataset
that is used for training as our measurement efficiency metric.
5.2 Baselines

We are unaware of any other work in the literature adopting a
generative modeling approach like ours for efficient mobile network
drive testing. So we consider a range of alternative approaches from
other domains as baselines.

Fit Distribution and Sample (FDaS). FDaS [15, 40] is another
simple minded baseline that focuses on modeling the distribution
(histogram) of the data for any given radio KPI. Specifically, it
fits a distribution based on the real KPI data (ignoring the time
dimension) using maximum likelihood estimation, and samples
from it afterwards to generate the data for that KPI. While this
baseline can be effective with respect to the HWD metric, it can
be quite poor in terms of the other fidelity metrics as it does not
consider relationship with context nor the temporal relationships
in the data.

Multilayer Perceptron (MLP) is a simple minded baseline that
infers the data for each radio KPI independently at each time step
through regression over the context input. Clearly, this baseline
does not account for the temporal relationships within the real KPI
time series data. Moreover, as it focuses solely on the relationship
between context and KPI data, it does not model stochasticity of
the latter either.

LSTM-GNN [58], a variant of [24], is a state-of-the-art model
architecture for GNN based time-series prediction. We use it as a
baseline as an alternative approach especially with respect to the
first two neural network components of GenDT generator (§4.3.1),
and highlight the benefit of GenDT’s handling of dynamic context
input, batch based generation and use of stochastic layers.

DoppelGANger (DG) [31] and Variant. As mentioned in §2.1,
DG is a state-of-the-art multivariate time series data generation
model and so is a natural baseline approach to compare with. The
original DG model (depicted in Figure 17a) generates the context
in its first stage. In our problem setting, however, this context
data is readily accessible to the operator and can be directly used
without having to learn to generate it. So we additionally consider
an optimized variant of DG called ‘Real Context DG’ in which we
bypass the context generation stage and directly input real context
to the second stage time-series data generator in DG, as depicted
in Figure 17b.
6 EVALUATION RESULTS

Here in §6.1 we first the evaluate GenDT on the fidelity metrics
from §5.1 and benchmark it against the baselines outlined in §5.2.
Then we demonstrate that the uncertainty measure within GenDT
can be used to optimize measurement efficiency (§6.2). In §6.3, we
demonstrate the value of GenDT-generated data for two down-
stream use cases. Finally, we carry out an ablation study of GenDT
to examine the effect of its underlying design choices (§C.1).
6.1 Fidelity and Generalization

Setup. To assess the generalization capability of GenDT to new
unseen trajectories, we split each of our datasets into two non-
overlapping parts: training and testing. We further make sure to
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Method RSRP RSRQ SINR CQI
MAE DTW HWD MAE DTW HWD MAE DTW HWD MAE DTW HWD

GenDT 7.18 3.73 4.93 1.9 1.27 13.2 4.0 4.6 7.2 1.9 1.20 3.8
FDaS 13.63 17.23 4.80 2.8 1.80 10.1 8.2 6.2 5.9 3.1 1.90 3.8
MLP 10.83 9.3 12.20 2.4 1.70 11.0 7.6 5.9 9.0 2.7 1.33 6.1

LSTM-GNN 17.53 13.80 11.47 2.8 1.81 13.1 9.6 6.9 11.2 3.0 1.55 4.1
Orig. DG 12.93 14.17 4.98 2.9 1.86 11.9 8.8 5.9 6.5 3.2 1.60 3.8

Real Cont. DG 9.11 6.07 10.2 2.2 1.69 12.5 5.3 5.4 8.5 2.1 1.25 4.3
Table 4: Average performance of GenDT and baselines across all scenarios in Dataset A for RSRP, RSRQ, SINR, and CQI time

series generation.

Method
MAE↓ DTW↓ HWD↓

City C-
enter 1

City C-
enter 2

High-
way 1

High-
way 2

City C-
enter 1

City C-
enter 2

High-
way 1

High-
way 2

City C-
enter 1

City C-
enter 2

High-
way 1

High-
way 2

GenDT 4.9 4.8 8.5 8.9 2.8 2.9 5.1 5.4 3.8 1.3 5.2 7.3
FDaS 9.8 11.7 16.7 10.8 6.5 8.8 14.8 10.1 3.4 3.1 7.9 6.4
MLP 8.5 3.2 14.5 16.9 5.6 3.1 11.9 15.2 4.1 2.8 18.7 14.0

LSTM-GNN 19.7 16.8 18.3 13.6 12.1 11.8 14.2 11.2 8.6 10.0 8.5 8.0
Orig. DG 15.6 14.3 17.1 14.6 11.5 10.1 10.4 9.8 5.0 3.2 9.5 9.2

Real Cont. DG 10.3 7.4 9.1 9.4 3.9 4.6 6.0 5.9 3.8 2.9 11.8 9.8
Table 5: Generated RSRP time series fidelity with GenDT and baselines for different scenarios in Dataset B.

Method MAE↓ DTW↓ HWD↓
Walk Bus Tram Walk Bus Tram Walk Bus Tram

GenDT 5.17 8.88 7.49 2.4 5.2 3.6 7.2 3.7 3.9
FDaS 11.2 15.6 13.1 15.5 19.0 17.2 6.9 4.2 3.3
MLP 9.9 11.5 12.1 9.0 11.1 7.8 13.8 9.9 12.9

LSTM-GNN 21.5 18.3 12.8 12.1 14.2 15.1 9.7 12.3 12.4
Orig. DG 10.8 14.3 12.7 11.9 16.1 14.5 11.9 13.4 10.1

Real Cont. DG 9.2 10.43 7.71 5.1 7.9 5.2 12.6 11.2 4.9

Table 3: Generated RSRP time series fidelity with GenDT and

baselines for different scenarios in Dataset A.

avoid geographic proximity between training and testing measure-
ment data locations.We only report performance on the testing set
throughout this whole section. While we show results of GenDT
(and other baselines) in different scenarios separately to highlight
the versatility of GenDT, note that these are all generated using
the same GenDT model.
6.1.1 Dataset A. Here we present evaluation results with Dataset
A focusing on generation of time series for RSRP, RSRQ, SINR and
CQI KPIs. We first carry out the per scenario evaluation focusing
on RSRP, before evaluating the average performance of GenDT for
all KPIs across all scenarios.

By comparing the performance of different methods under mul-
tiple metrics in Table 3 for the generated RSRP KPI time series, we
observe that the GenDT generally yields the best performance of
each scenario for all metrics. Though FDaS expectedly can model
the data distribution well (measured by HWD metric), its perfor-
mance on other two metrics (particularly DTW) is the worst among
all the alternatives compared. MLP performance is intermediate
to worst on all metrics, especially in terms of HWD, as it does not
model stochasticity and temporal behavior. The HWD performance
of LSTM-GNN is similar to that of MLP due to the same underlying
reason. Interestingly, it exhibits rather poor performance on MAE
and DTW, even worse than MLP that does not model temporal
variation at all. We attribute this to two reasons: (1) LSTM-GNN is
a prediction model not a generative one; and (2) it does not have
mechanism for effective long series generation.

The original DG model, despite being a time-series data gener-
ation model, performs poorly across all metrics, about similar or
worse than MLP and LSTM-GNN. This is because it is limited by
the generated context. Real context DG (our optimized variant of

DG) is free from this limitation and better reflects the performance
of data generator in DG. Still, it yields only intermediate perfor-
mance due to its inability to handle dynamic network context input
and insufficient mechanisms to capture stochasticity, latter clearly
reflected in the poor HWD performance relative to GenDT. The
shortcoming of real context DG relative to GenDT with respect to
the former context handling issue and the effectiveness of GNN
structure in GenDT to that end is illustrated in the generated RSRP
series with these methods in Figure 18 (in Appendix C).

Considering all the considered KPIs including RSRP, the average
performance across all scenarios is reported in Table 4. We observe
that the big performance improvements seen with GenDT above
continue to hold with the exception of CQI performance, where
benefits are somewhat marginal. We attribute this to the fact that,
unlike other KPIs, CQI generation is a classification problem in-
volving a choice of one among discrete values from 1 to 15. Overall,
we observe that the overlapping batches based training on top of
batch generation and handling time-varying relevant context input
plays a key role in the superior performance of GenDT, so does
the SRNN structure in the generator (§4.3.4) which helps in better
modeling the data distribution.
6.1.2 Dataset B. We now consider Dataset B which consists
of longer and more complex movement trajectories over a wider
geographical region. This dataset, however, lets us evaluate with
respect to generation of time series for only RSRP and RSRQ KPIs
as it lacks the other KPIs.

As before, we first consider RSRP and report performance at
the per-scenario level in Table 5. Again, we observe that GenDT
generally yields the best performance and FDaS doing marginally
better in terms of HWD as expected. The average performance
across all scenarios is reported in Table 6, also considering the
RSRQ KPI. We notice that relative to significant improvements seen
with GenDT in the case of RSRP, gains for RSRQ are less striking.
We find that this is because the RSRQ values in the test scenarios
are fairly stable and also vary in a much smaller range than RSRP,
thereby limiting the room for improvement.
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(a) RSRP time series

Real
GenDT

RSRP
(b) RSRP data distribution

Figure 9: Visualization of GenDT performance evaluated

over a long and complex trajectory in Dataset B.

Method RSRP RSRQ
MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓

GenDT 6.78 4.05 4.40 1.7 1.40 8.1
FDaS 12.25 10.05 5.20 2.9 1.98 10.8
MLP 10.63 8.95 9.90 2.6 1.81 8.5

LSTM-GNN 17.1 12.33 8.78 2.4 2.0 12.9
Orig. DG 17.93 9.17 11.80 2.9 1.86 12.9

Real Cont. DG 9.05 5.10 7.08 2.0 1.53 11.1

Table 6: Average performance of GenDT and baselines across

all scenarios in Dataset B for RSRP and RSRQ generation.

Method RSRP RSRQ
MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓

GenDT 11.69 7.18 10.4 3.9 2.40 2.1
FDaS 24.25 16.05 19.20 10.8 13.1 2.98
MLP 18.63 14.95 29.90 8.61 9.9 4.6

LSTM-GNN 18.1 13.80 30.78 10.45 9.9 4.9
Orig. DG 20.40 13.45 26.73 10.1 13.9 2.3

Real Cont. DG 15.05 10.80 27.08 5.08 7.1 3.0

Table 7: Overall performance of GenDT and baselines for

long and complex trajectory case in Dataset B.

6.1.3 Long and Complex Scenarios. We now consider a long contin-
uous trajectory lasting 2230𝑠 (∼40mins) as the testing set to evaluate
GenDT and baselines for generation of long series of radio KPI data
over a complex scenario. The considered trajectory spans three
cities in Dataset B (Wuppertal, Hamm, and Koln), including inner
city driving and highway driving between them. The total length of
the trajectory is about 40𝑘𝑚. We make sure that this test trajectory
does not overlap nor has significant proximity to trajectories in the
training set. Moreover, the training set does not include data from
any of the three cities or routes between them.

We first show qualitative results in Figure 9, where we can see
that the generated RSRP series with GenDT varies in a range that
tightly covers the ground truth (Figure 9a), and also shows good
match with ground truth in terms of RSRP data distribution (Fig-
ure 9b). Note that the upper/lower bounds shown in Figure 9a are
not themselves generated time series with GenDT. Rather, they
represent min/max statistics of the generated samples for each time
instant. We then summarize the quantitative results in Table 7 that
show the overall performance of GenDT compared to baselines.
We see that GenDT consistently and significantly outperforms on
all metrics for both RSRP and RSRQ. These results particularly
highlight the benefit of batch generation given the length of the
target trajectory with only Real Context DG coming close to the
performance of GenDT. The additional measures in GenDT to aid
in effective long series generation (autoregressive ResGen) and
beyond (GNN structure and stochastic layers) explain its superior
performance. These results also highlight the pitfall of FDaS as data
distribution of the complex target trajectory is not captured by the
training set and so FDaS yields poor performance even in terms of
HWD.

Method MAE↓ DTW↓ HWD↓
GenDT 11.69 7.18 10.4
50s Trajectory 14.50 10.1 18.79
100s Trajectory 13.11 9.05 16.86

Table 8: GenDT per-

formance compared

with short trajectory

generation for long

trajectory case in

Dataset B.
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Figure 10: GenDT-generated RSRP

time series compared with short in-

dependently generated trajectories.

Note that for high fidelity drive test data generation, it is es-
sential to support long series generation. To illustrate this point,
we compare GenDT with two cases, where the data for the long
(2200+s) target trajectory considered in this subsection is instead
obtained by stitching data from multiple independently generated
short (50s and 100s) trajectories. Results shown in Table 8 clearly
indicate that short trajectory generation does worse than GenDT,
especially in terms of the data distribution (HWD metric). Visual-
ization of RSRP series generated with these alternatives (GenDT
and 50s/100s short independent trajectories) in Figure 10 clearly
highlight the artifacts at the points successive short trajectories
are stitched together, whereas GenDT-generated RSRP time series
samples closely track the real measurement data. Note that in this
figure, we zoom in on the last 400s of the long trajectory to allow
the differences to be clearly seen. These results overall highlight the
need to capture long-term temporal relations in the data to ensure
high fidelity generation.
6.2 Measurement Efficiency

6.2.1 Model Uncertainty. Data uncertainty is irreducible due to the
nature of the data while model uncertainty can be reduced by train-
ing on more data and actively selecting new training points [21].
The design of GenDT naturally decouples data and model uncer-
tainty: the data uncertainty is reflected by the actual value of the
standard deviation in the learned Gaussian distribution from Res-
Gen while the model uncertainty is determined by the variation
of the Gaussian parameters. We use MC dropout [21] to obtain the
model uncertainty of GenDT, i.e., the dropout is turned on during
generation time to obtain multiple outputs of the model. As the pa-
rameters of observation model (mean and standard deviation of the
parametric Gaussian) are the (direct) output of the neural network
of ResGen, we use the standard deviation of them averaged over
time as the model uncertainty. Specifically, the model uncertainty
is defined as:

𝑈 (𝐺𝜃 ) =
1
𝑇

∑︁
𝑡=1· · ·𝑇

𝑠𝑡𝑑 (𝜎𝜃 )𝑡 + 𝑠𝑡𝑑 (𝜇𝜃 )𝑡

where 𝑇 is the length of target series and 𝑠𝑡𝑑 is the standard devia-
tion computed by empirical samples with dropout turned on.

6.2.2 Uncertainty Driven Measurement. We evaluate the usefulness
of the model uncertainty in an active learning setup on Dataset B,
mimicking a real-world uncertainty driven drive test measurement
data collection process.

Here we take the long trajectory in §6.1.3 as the testing set
(named as 𝑆𝐿). We remove the testing set from Dataset B, and split
the rest of the data into 23 subsets with no overlap in geographical
region between them. We initially start with just one small subset
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Figure 11: Assessing selection of new training data based on

GenDT uncertainty measure relative to random selection.of data as the training set. At each step, we evaluate the trained
model on each of the remaining subsets in the data to obtain the
model uncertainty, and select the one with highest uncertainty as
new training data to add to the current training set. Concurrently,
we evaluate the GenDT model performance on 𝑆𝐿 at each step to
assess the benefit with the above uncertainty guided training data
selection. As shown in Figure 11, just after two steps (with 10% of
the available data used), the performance on 𝑆𝐿 no longer shows
clear improvement on both DTW and HWD. We omit MAE results
for brevity as they are similar to DTW.

As an alternative approach, we perform random selection with
the same starting subset of the selected 10 subsets. In other words,
we follow the same process as above but at each step randomly
selecting the training point to add instead of relying on the un-
certainty measure. Results in Figure 11 shows that for the same
number of selected subsets, the random selection always shows
lower training efficiency compared to the uncertainty basedmethod.
Furthermore, the random selection never goes into a case where
its performance is better than uncertainty based selection, which
means that the uncertainty based method does provide an optimal
path to add the most informative data. Overall, with uncertainty
guided (random) training data selection, 10% (20%) of the available
data (23 subsets) is sufficient to achieve the most generalization
that can be evaluated for Dataset B. We could equivalently view
this as achieving 90% (80%) measurement efficiency compared to
traditional drive testing. Indeed, this efficiency could be higher as
the model can generate many more trajectories for which ground
truth may not be available.
6.3 Downstream Use Cases

In this section, we assess howwell our GenDT approach can support
drive testing use cases. The general idea here is to consider use
cases that depend on drive testing measurement data, and evaluate
the effect of using GenDT-generated data for those use cases in
comparison with using actual measurement data. The choice of the
use cases highlighted is constrained by the access to ground-truth
radio KPI measurement data to conduct such an evaluation. In the
following, we present results for two distinct use cases, each relying
on data for a different set of radio KPIs. In Appendix C.2, we discuss
further use cases that GenDT can support.
6.3.1 Mobile Service Quality of Experience (QoE) Prediction. User
QoE assessment is a key focus of mobile network operators for
which they engage in drive test measurement data collection. Appli-
cation layer throughput is a key QoE metric of interest that in turn
depends on lower layer radio KPIs such as RSRP and RSRQ [44, 45].
We also consider Packet Error Rate (PER) as another key QoEmetric.
We focus on Dataset A that not only includes drive/walk testing
based measurement data for multiple radio KPIs collected with

Method Throughput PER
MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓

Real 6.7 4.0 1.2 0.22 0.18 1.9
RSRP & RSRQ Excluded 13.1 9.6 2.4 0.48 0.39 3.8

GenDT 5.9 4.6 1.4 0.24 0.23 2.7
FDaS 13.4 9.9 2.4 0.48 0.30 3.5
MLP 8.6 5.9 2.1 0.33 0.38 3.2

LSTM-GNN 14.0 9.4 2.5 0.35 0.39 3.4
Orig. DG 13.1 10.1 2.3 0.47 0.39 3.3

Real Cont. DG 7.9 5.1 1.2 0.28 0.31 2.8

Table 9: Performance with GenDT-generated RSRP and

RSRQ data when applied to QoE (throughput and PER) pre-

diction use case, relative to baselines.

Nemo Handy [26] but also corresponding downlink throughput
and PER measurements obtained with iPerf3 [18].

For QoE prediction, we leverage a recentwork [56] that examined
machine learning based prediction of application QoE metrics like
throughput based on drive testing based radio KPI measurement
data, including RSRP and RSRQ. In particular, we use the MLP
based regression model for QoE metric prediction from [56] that
uses RSRP, RSRQ, device location, etc. as features. We first confirm
that RSRP and RSRQ KPIs are critical for accurate QoE prediction
with this model by dropping these two KPIs from the model and
observing the significant divergence between real (measured) and
predicted throughput (see Figure 12a and second row in Table 9).
In contrast, including measured RSRP and RSRQ KPI data greatly
improves the throughput prediction (see Figure 12b and first row
in Table 9).

To assess the usefulness of GenDT for this use case, we now
evaluate the effect of using GenDT-generated RSRP and RSRQ time
series data. Quantitative results are shown in Table 9 when using
data generated with GenDT and baselines. Note that we use the
same fidelity metrics of MAE, DTW and HWD as before, except that
these results evaluate the fidelity of predicted throughput and PER
time series with respect to their real (measured) series. We observe
that GenDT-generated RSRP/RSRQ data yields QoE predictions
very similar to that of using corresponding real data, and much
superior to using data generated with baselines.
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Figure 12: (a, b) Throughput prediction performance with

and without RSRP/RSRQKPImeasurement data, and (c) with

GenDT-generated RSRP/RSRQ data.

6.3.2 Analysis of Handovers. Optimizing the handover frequency
and performance is of key importance to mobile network operators
as too many handovers can not only degrade user experience but
also increase signalling overhead in the network. This is done in
practice by tuning thresholds of multiple KPIs relevant for mobil-
ity management informed by drive testing measurement data on
handovers [51].

To support this use case on inferring handovers for a given net-
work deployment, we retrained GenDT to generate the time series
of an additional KPI – the serving cell. Tracking serving cell changes
essentially provides the information on time between handovers.
Note that GenDT model itself remains unchanged from what is
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Method HWD↓
GenDT 2.4
FDaS 8.3
MLP 6.1
LSTM-GNN 5.3
Orig. DG 8.0
Real Cont. DG 3.0

Table 10: Inter-handover

time distribution esti-

mation with GenDT-

generated serving cell

data, relative to base-

lines.
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Figure 13: Inter-handover time dis-

tribution from GenDT-generated

serving cell data compared to real

distribution in Dataset B.

described in §4 to accomodate this new serving cell KPI. Quanti-
tative results from Table 10 clearly show that GenDT-generated
serving cell data provides inter-handover time distribution that
closely match with real data compared to the baseline approaches.
This is also apparent from the CDF of inter-handover times with
GenDT shown in Figure 13 compared to their real counterpart from
drive test measurements in Dataset B. In contrast, inter-handover
times from DG-generated data are off from the real.
7 DISCUSSION

7.1 Using GenDT in Practice

The typical and intended key user of GenDT is a mobile network
operator. They would naturally possess network (cell information)
context for their deployed network. Environment context informa-
tion can be easily accessed through public sources, along the lines
of what we did in this work. As illustrated in Figure 14, the oper-
ator can build a pre-trained GenDT model using historical drive
test measurement data and the corresponding context information.
This pretrained model can be readily used for generating multi-KPI
time series data like that obtained with traditional drive testing
by inputting a context annotated test trajectory (see Figure 5) and
noise. This is depicted as the ‘Generation Phase’ in Figure 14 and
can be imagined as a desktop tool for the operator to support use
cases like in §6.3 and Appendix C.2 that would otherwise require a
drive test measurement campaign.

GenDT design has built-in support to allow an initial trained
model to be efficiently updated for high-fidelity data generation
in new unseen scenarios, shown under the ‘Training Phase’ in Fig-
ure 14. Although GenDT design is region agnostic, its use in new
regions offers a natural opportunity for potential model retrain-
ing. This is best explained through an example. Suppose the new
previously unseen target region is a city like New York City. We
bootstrap the model retraining step with existing pretrained model
– Figure 14: 1○ – along with coarse-grained measurement of target
region (e.g., drive test measurements in a randomly selected street
within each district of NYC) and corresponding contextual infor-
mation – Figure 14: 2○. This can start the cyclical process of further
measurement data collection guided by the model uncertainty met-
ric (see §4.3.2 and §6.2) and model retraining – Figure 14: 3○. The
outcome of this model retraining process is an updated version of
the model used in the Generation Phase.
7.2 Limitations of GenDT

Here we discuss some limitations of our work, which provide op-
portunities for future research on efficient drive testing.
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Figure 14: Schematic illustrating GenDT use in practice.

Our approach towards efficient drive testing is to mimic drive
testing process through a deep generative model. But we do this in
an “open-loop” manner in that the effect of network side configu-
ration, control mechanisms and traffic load are not accounted for.
This limits the generalizability of our approach. Extending GenDT
to a closed-loop design aided by network side information is a
significant issue for future work.

Our analysis of drive test measurement data characteristics has
revealed that radio KPIs exhibit significant inherent stochasticity.
Similarly, our measurement efficiency evaluation in §6.2 shows
that some parts of measurement data carry significantly more in-
formation than others that can be exploited to reduce the model
uncertainty. Digging deeper into the root causes of both these as-
pects is an issue for future work.

Our evaluations assessing the fidelity of GenDT generated data
do not include comparison with alternative approaches for efficient
drive testing, namely MDT or crowdsourced based measurement ap-
proaches. Addressing this issue, however, would depend on having
access to sufficiently large and representative MDT and crowd-
sourcing measurement datasets, which is a challenge in itself. As
such, it is a topic for future work.
8 CONCLUSIONS

We have presented GenDT, a new conditional deep generative
model. GenDT is the first data generation method for radio KPI
time series data, aimed at reducing the measurement effort with
drive testing. It embeds a number of innovative aspects, including
the use of stochastic layers on top of a GNN and LSTM based
network to process dynamic input network context and to model
stochasticity, and batch based training and generation for high
fidelity long series generation. We evaluate GenDT with real drive
test measurement data from two different countries, covering a
wide range of scenarios. Our results show that GenDT generally
outperforms a range of baselines, and by a big margin. We also
show that GenDT can generate radio KPI time series over long
and complex trajectories with high fidelity. Moreover, GenDT is
being able to tell apart data uncertainty from model uncertainty.
The knowledge of model uncertainty in turn enables selection of
the most informative measurement data for model training, which
can significantly reduce the measurement overhead — our results
show the potential to optimize measurement efficiency by up to
90% while not compromising data fidelity. We also demonstrate
that the efficacy of GenDT-generated data to support downstream
drive test measurement use cases is comparable to that of real data.
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A DATA ANALYSIS AND MODEL DETAILS

A.1 Visualization of Environment Context

Attributes

Green Urban Office Primary Roads

Figure 15: Spatial distribution of 3 selected environment context

attributes in Dataset B.

Environment Context Attribute

Land Use Type PoIs

Continuous Urban Tourism
High Dense Urban Cafe

Medium Dense Urban Parking
Low Dense Urban Restaurant

Very-Low Dense Urban Post/Police
Isolated Structures Traffic Signal

Green Urban Office
Industrial/Commercial Public Transport

Air/Sea Ports Shop
Leisure Facilities Primary Roads
Barren Lands Secondary Roads

Sea Motorways
Railway Stations

Tram Stops

Table 11: List of environment context attributes considered.

See examples in Figure 15
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Figure 16: CDF of distance to serving cell in different scenar-

ios.

A.2 Details of Stochastic Layers

The intensity of noise is controlled by a function. When we add
noise, we do not want to change the total value of hidden state of
all hidden dimensions, so we have:

ℎ′𝑡 = (ℎ𝑡 + 𝑎ℎ𝑛𝑡,ℎ)
∑
𝑖=1:𝐻 ℎ𝑡,𝑖∑

𝑖=1:𝐻 (ℎ𝑡,𝑖 + 𝑎ℎ𝑛𝑡,ℎ,𝑖 )
, ℎ𝑡 = {ℎ𝑡,1, · · · , ℎ𝑡,𝐻 }

𝑐′𝑡 = (𝑐𝑡 + 𝑎𝑐𝑛𝑡,𝑐 )
∑
𝑖=1:𝐻 𝑐𝑡,𝑖∑

𝑖=1:𝐻 (𝑐𝑡,𝑖 + 𝑎𝑐𝑛𝑡,ℎ,𝑖 )
, 𝑐𝑡 = {𝑐𝑡,1, · · · , 𝑐𝑡,𝐻 }

Where 𝐻 is the dimension of hidden state ℎ𝑡 and 𝑐𝑡 . Using different
𝑎ℎ and 𝑎𝑐 , we can control the relative intensity of noise to the hid-
den states, and thus control the uncertainty level during training.

We use a different training method compared with [20], where
the learning was done by variational inference with an inference
network introduced to use the backward-recurrent state to approx-
imate the nonlinear dependence of ℎ′𝑡 with future observation 𝑥𝑡 :𝑇
and states ℎ𝑡 :𝑇 . Instead, in our case effective training of SRNN
is realized via adversarial training with a discriminator. A LSTM
based discriminator provides extra training signal on top of the L2
norm loss function to make the model converge with nonlinear
dependence of ℎ′𝑡 .

A.3 Hyper Parameters

We use single layer LSTM network for both GNN-Node and aggre-
gation networks in the GenDT generator. Hidden layer dimensions
for both GNN-Node and aggregation networks are set to 100.

We use 50 for the batch length by default and the default step
length is set to 5. Note that, in our experiments, we found that any
step length between 1 and 15 gives similar result.
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Figure 17: Schematic of original DoppelGANger (DG) and its

optimized variant.

Noise intensity [𝑎ℎ, 𝑎𝑐 ] are chosen in the range of [1, 3] with
the best fit of histogram – larger intensity means more significant
variation in output series but needs to be fine-tuned per scenario.
In general, 𝑎ℎ = 𝑎𝑐 = 2 gives good results for most of the cases.

B DISCUSSION ON DOPPELGANGER

As DoppelGANger (DG) seeks to provide a generic data generation
architecture across different types of time series data and use cases
as well as allow hiding sensitive context (called metadata in DG), it
adopts a two stage generation process. In the first stage, context is
generated from noise through an unconditional GAN model. The
generated context then is used to condition (control) the generation
of target time-series network/system data in the second stage via a
conditional GAN model.

From the perspective of our mobile network drive testing data
generation problem and our proposed GenDT method, DG has four
key limitations:
• The DG model architecture cannot handle dynamic network
context input. GenDT overcomes this issue through a tailored
GNN based generation model.

• There is very limited support for modeling stochasticity in DG
via naive direct injection of noise as input to the model. GenDT,
on the other hand, comprehensively and effectively deals with
this issue through stochastic layers in the model as well as noise
input through its residual generator.

• DG adopts a batch generation approach for long time series
generation, while GenDT builds on this and optimizes it much
further through its autoregressive residual generator and training
with overlapping batches.

• DG lacks any mechanism to minimise training data required,
whereas GenDT has the built-in residual generator to provide
cues on the need for more training data.
It is worth noting that the motivation behind DG (and even Spec-

traGAN) is to overcome the barrier to accessing real data stemming
from commercial sensitivity or privacy concerns, whereas the high
cost of measurement data collection with drive testing motivates
our design of GenDT.
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Figure 18: Sample of generated RSRP time series with GenDT

and real context DG in Dataset A for the Walk scenario.

Method RSRP RSRQ
MAE↓ DTW↓ HWD↓ MAE↓ DTW↓ HWD↓

GenDT 8.10 5.89 7.67 1.7 1.34 1.65
No ResGen 7.99 6.60 13.7 1.6 2.3 9.7
No SRNN 11.53 8.89 10.4 2.4 1.99 4.8

No GAN loss 14.66 12.45 15.3 3.8 3.6 6.9
No batch 12.9 9.60 10.5 2.6 2.3 3.7

Table 12: GenDT ablation test on Dataset B considering

RSRP and RSRQ.

C ADDITIONAL EVALUATION AND USE

CASES

C.1 Ablation Study

Comparison with baselines earlier in §6.1 has already highlighted
the limitations of alternative designs. Here we examine the benefit
from some of the key design choices underlying GenDT through an
ablation test. For this, we consider RSRP and RSRQ KPIs, common
to both datasets, and report results with Dataset B.

From the results in Table 12, we see that ResGen plays a critical
role in effectively introducing noise to help model stochasticity.
Without ResGen, GenDT degrades considerably in terms of the
HWD metric. An interesting related observation is that environ-
ment context input through ResGen in GenDT does not always
help in improving the fidelity on other metrics (MAE, DTW), maybe
because KPI dynamics can be high for the same input environment
context. In contrast, the use of stochastic layers (SRNN) consistently
improves all metrics, including HWD targeted by this mechanism.

Ablation results indicate that the adversarial training (i.e., use
of discriminator) is key to GenDT performance. Dropping ‘GAN
loss’ from the loss function results in the most performance degra-
dation on all metrics compared to all other design choices. The
adversarial network of GenDT is trained to learn to play a similar
role as the Inference Network in [20], and thus it is critical for effec-
tive model training. As expected, the use of batch generation and
training with overlapping batches has a beneficial effect on MAE
and DTW fidelity metrics but also improves HWD. The batching
related mechanisms are particularly effective when generating data
for long trajectories, as previously highlighted in §6.1.3.
C.2 Further Use Cases

GenDT is intended to support the use cases that rely on traditional
drive testing. We evaluated GenDT for two such cases in §6.3. Here
we outline several more example use cases. While GenDT can be
readily applied to these use cases listed below without reliance
on drive test measurements, evaluating its effectiveness requires
access to relevant KPI measurement data as well as ground-truth
for use case specific metrics.

• Video Streaming QoE Prediction. Depending on the QoE met-
ric, measurement of multiple radio KPIs are required to infer
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the video streaming QoE [33]. GenDT can support this use
case along the lines of throughput and PER prediction use
case we highlighted in §6.3.

• Cell Load Estimation. In [9, 46], the authors proposed using
RSRQ and SINR to estimate the cell load under different
scenarios. Since we do not have the ground truth cell load
information, we are not able to verify the accuracy of these
methods. But these prior works offer a way to infer cell load
through drive test measurements, which can be efficiently
supported with GenDT.

• Link Bandwidth Prediction. In [64], the authors identify five
KPIs has significant correlation with link bandwidth (namely,
RSRP, RSRQ. CQI, Handover, and BLER) and proposed a
method to infer the link bandwidth with these five KPIs.
As we have considered several of these KPIs, it would be
straightforward to support this use case with GenDT and

evaluate it when real link bandwidth measurement data is
accessible.

• Uplink Network Jitter Prediction. KPIs such as RSSI, Cell ID,
device location, RSRQ, RSRP and, importantly, the average
transport block (TB) size, enable prediction of uplink jit-
ter [50]. This use case can be supported by GenDT via gen-
eration of data for these aforementioned KPIs.

What-If Analysis Studies. Over and beyond the type of radio
KPI based use cases mentioned above, the context driven design of
GenDT naturally lends itself to what-if analysis studies. An example
of such a study is to examine the impact of deploying new cells in
the operator’s network on radio KPIs, prior to deployment. Another
example is to easily study the effect of recent/potential changes in
the environment context of a target region (e.g., construction of
new highways or big buildings) on radio KPIs without needing to
conduct drive test measurements.
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