20,485 research outputs found

    Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 6

    Get PDF
    Evaluated sets of rate constants and photochemical cross sections are presented. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena

    Chemical kinetics and photochemical data for use in stratospheric modeling

    Get PDF
    Rate constants and photochemical cross sections are presented. The primary application of the data is for modeling of the stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena

    Chemical kinetics and photochemical data for use in stratospheric modeling evaluation Number 8

    Get PDF
    This is the eighth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory, Documentation Section, 111-116B, California Institute of Technology, Pasadena, California, 91109

    Entanglement of indistinguishable particles in condensed matter physics

    Get PDF
    The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently to other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor changes, added references

    A New Look At Carbon Abundances In Planetary Nebulae. III. DDDM1, IC 3568, IC4593, NGC 6210, NGC 6720, NGC 6826, & NGC 7009

    Get PDF
    This paper is the third in a series reporting on a study of carbon abundances in a carefully chosen sample of planetary nebulae representing a large range in progenitor mass and metallicity. We make use of the IUE Final Archive database containing consistently-reduced spectra to measure line strengths of C III] 1909 along with numerous other UV lines for the planetary nebulae DDDM1, IC 3568, IC 4593, NGC 6210, NGC 6720, NGC 6826, & NGC 7009. We combine the IUE data with line strengths from optical spectra obtained specifically to match the IUE slit positions as closely as possible, to determine values for the abundance ratios He/H, O/H, C/O, N/O, and Ne/O. The ratio of C III] 1909/C II 4267 is found to be effective for merging UV and optical spectra when He II 1640/4686 is unavailable. Our abundance determination method includes a 5-level program whose results are fine-tuned by corrections derived from detailed photoionization models constrained by the same set of emission lines. All objects appear to have subsolar levels of O/H, and all but one show N/O levels above solar. In addition, the seven planetary nebulae span a broad range in C/O values. We infer that many of our objects are matter bounded, and thus the standard ionization correction factor for N/O may be inappropriate for these PNe. Finally, we estimate C/O using both collisionally-excited and recombination lines associated with C+2 and find the well established result that abundances from recombination lines usually exceed those from collisionally-excited lines by several times.Comment: 36 pages, 7 tables, 2 figures, latex. Tables and figures supplied as two separate postscript files. Accepted for publication in Ap

    Chemical kinetics and photochemical data for use in stratospheric modeling

    Get PDF
    As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory

    Thermal divergences on the event horizons of two-dimensional black holes

    Full text link
    The expectation value of the stress-energy tensor \langleT_{\mu\nu}\rangle of a free conformally invariant scalar field is computed in a general static two-dimensional black hole spacetime when the field is in either a zero temperature vacuum state or a thermal state at a nonzero temperature. It is found that for every static two-dimensional black hole the stress-energy diverges strongly on the event horizon unless the field is in a state at the natural black hole temperature which is defined by the surface gravity of the event horizon. This implies that both extreme and nonextreme two-dimensional black holes can only be in equilibrium with radiation at the natural black hole temperature.Comment: 13 pages, REVTe

    Constraining ^(26)Al+p resonances using ^(26)Al(^3He,d)^(27)Si

    Get PDF
    The ^(26)Al(^3He,d)^(27)Si reaction was measured from 0°≤θ_(c.m.)≤35° at E(^3He)=20 MeV using a quadrupole-dipole-dipole-dipole magnetic spectrometer. States in ^(27)Si were observed above the background at 7652 and 7741 keV and upper limits were set for the state at 7592 keV. Implications for the ^(26)Al(p,γ)^(27)Si stellar reaction rate are discussed
    corecore