29,453 research outputs found

    Soot formation and burnout in flames

    Get PDF
    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered

    Biofuel Subsidies: An Open-Economy Analysis

    Get PDF
    We present a general equilibrium analysis of biofuel subsidies in an open-economy context. In the small-country case, when a Pigouvian tax on conventional fuels such as crude is in place, the optimal biofuel subsidy is zero. When the tax on crude is not available as a policy option, however, a second-best biofuel subsidy (or tax) is optimal. In the large-country case, the optimal tax on crude departs from its standard Pigouvian level and a biofuel subsidy is optimal. A biofuel subsidy spurs global demand for food and confers a terms-of-trade benefit to the food-exporting nation. This might encourage the food-exporting nation to use a subsidy even if it raises global crude use. The food importer has no such incentive for subsidization. Terms-of-trade effects wash out between trading nations; hence, any policy intervention by the two trading nations that raises crude use must be jointly suboptimal.optimal biofuel subsidy, Pigouvian tax, terms-of-trade, pollution externality

    Non-equilibrium fluctuations and mechanochemical couplings of a molecular motor

    Full text link
    We investigate theoretically the violations of Einstein and Onsager relations, and the efficiency for a single processive motor operating far from equilibrium using an extension of the two-state model introduced by Kafri {\em et al.} [Biophys. J. {\bf 86}, 3373 (2004)]. With the aid of the Fluctuation Theorem, we analyze the general features of these violations and this efficiency and link them to mechanochemical couplings of motors. In particular, an analysis of the experimental data of kinesin using our framework leads to interesting predictions that may serve as a guide for future experiments.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    Geology of Hadley Rille

    Get PDF
    The regional setting, external and internal shape, and materials of Hadley Rille near the Apollo 15 landing site are described. The petrography presented includes lithologies, regolith, talus, and outcrops. The stratigraphy exposed on the rille wall is also considered

    Pattern formation of microtubules and motors: inelastic interaction of polar rods

    Full text link
    We derive a model describing spatio-temporal organization of an array of microtubules interacting via molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction kernel we obtain a set of equations for the local rods concentration and orientation. At large enough mean density of rods and concentration of motors, the model describes orientational instability. We demonstrate that the orientational instability leads to the formation of vortices and (for large density and/or kernel anisotropy) asters seen in recent experiments.Comment: 4 pages, 5 figures, to appear in Phys. Rev. E, Rapid Communication

    Pure-state quantum trajectories for general non-Markovian systems do not exist

    Full text link
    Since the first derivation of non-Markovian stochastic Schr\"odinger equations, their interpretation has been contentious. In a recent Letter [Phys. Rev. Lett. 100, 080401 (2008)], Di\'osi claimed to prove that they generate "true single system trajectories [conditioned on] continuous measurement". In this Letter we show that his proof is fundamentally flawed: the solution to his non-Markovian stochastic Schr\"odinger equation at any particular time can be interpreted as a conditioned state, but joining up these solutions as a trajectory creates a fiction.Comment: 4 page

    Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis

    Full text link
    Rapid-purification by feedback --- specifically, reducing the mean impurity faster than by measurement alone --- can be achieved by making the eigenbasis of the density matrix to be unbiased relative to the measurement basis. Here we further examine the protocol introduced by Combes and Jacobs [Phys.Rev.Lett. {\bf 96}, 010504 (2006)] involving continuous measurement of the observable JzJ_z for a DD-dimensional system. We rigorously re-derive the lower bound (2/3)(D+1)(2/3)(D+1) on the achievable speed-up factor, and also an upper bound, namely D2/2D^2/2, for all feedback protocols that use measurements in unbiased bases. Finally we extend our results to nn independent measurements on a register of nn qubits, and derive an upper bound on the achievable speed-up factor that scales linearly with nn.Comment: v2: published versio

    The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments

    Full text link
    There has been great interest in applying the results of statistical mechanics to single molecule experiements. Recent work has highlighted so-called non-equilibrium work-energy relations and Fluctuation Theorems which take on an equilibrium-like (time independent) form. Here I give a very simple heuristic example where an equilibrium result (the barometric law for colloidal particles) arises from theory describing the {\em thermodynamically} non-equilibrium phenomenon of a single colloidal particle falling through solution due to gravity. This simple result arises from the fact that the particle, even while falling, is in {\em mechanical} equilibrium (gravitational force equal the viscous drag force) at every instant. The results are generalized by appeal to the central limit theorem. The resulting time independent equations that hold for thermodynamically non-equilibrium (and even non-stationary) processes offer great possibilities for rapid determination of thermodynamic parameters from single molecule experiments.Comment: 6 page

    Bridging the microscopic and the hydrodynamic in active filament solutions

    Get PDF
    Hydrodynamic equations for an isotropic solution of active polar filaments are derived from a microscopic mean-field model of the forces exchanged between motors and filaments. We find that a spatial dependence of the motor stepping rate along the filament is essential to drive bundle formation. A number of differences arise as compared to hydrodynamics derived (earlier) from a mesoscopic model where relative filament velocities were obtained on the basis of symmetry considerations. Due to the anisotropy of filament diffusion, motors are capable of generating net filament motion relative to the solvent. The effect of this new term on the stability of the homogeneous state is investigated.Comment: 7 pages, 2 figures, submitted to Europhys. Let

    A Gapless, Unambiguous Genome Sequence of the Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933.

    Get PDF
    Escherichia coli EDL933 is the prototypic strain for enterohemorrhagic E. coli serotype O157:H7, associated with deadly food-borne outbreaks. Because the publicly available sequence of the EDL933 genome has gaps and >6,000 ambiguous base calls, we here present an updated high-quality, unambiguous genome sequence with no assembly gaps
    • …
    corecore