29,453 research outputs found
Soot formation and burnout in flames
The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered
Biofuel Subsidies: An Open-Economy Analysis
We present a general equilibrium analysis of biofuel subsidies in an open-economy context. In the small-country case, when a Pigouvian tax on conventional fuels such as crude is in place, the optimal biofuel subsidy is zero. When the tax on crude is not available as a policy option, however, a second-best biofuel subsidy (or tax) is optimal. In the large-country case, the optimal tax on crude departs from its standard Pigouvian level and a biofuel subsidy is optimal. A biofuel subsidy spurs global demand for food and confers a terms-of-trade benefit to the food-exporting nation. This might encourage the food-exporting nation to use a subsidy even if it raises global crude use. The food importer has no such incentive for subsidization. Terms-of-trade effects wash out between trading nations; hence, any policy intervention by the two trading nations that raises crude use must be jointly suboptimal.optimal biofuel subsidy, Pigouvian tax, terms-of-trade, pollution externality
Non-equilibrium fluctuations and mechanochemical couplings of a molecular motor
We investigate theoretically the violations of Einstein and Onsager
relations, and the efficiency for a single processive motor operating far from
equilibrium using an extension of the two-state model introduced by Kafri {\em
et al.} [Biophys. J. {\bf 86}, 3373 (2004)]. With the aid of the Fluctuation
Theorem, we analyze the general features of these violations and this
efficiency and link them to mechanochemical couplings of motors. In particular,
an analysis of the experimental data of kinesin using our framework leads to
interesting predictions that may serve as a guide for future experiments.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let
Geology of Hadley Rille
The regional setting, external and internal shape, and materials of Hadley Rille near the Apollo 15 landing site are described. The petrography presented includes lithologies, regolith, talus, and outcrops. The stratigraphy exposed on the rille wall is also considered
Pattern formation of microtubules and motors: inelastic interaction of polar rods
We derive a model describing spatio-temporal organization of an array of
microtubules interacting via molecular motors. Starting from a stochastic model
of inelastic polar rods with a generic anisotropic interaction kernel we obtain
a set of equations for the local rods concentration and orientation. At large
enough mean density of rods and concentration of motors, the model describes
orientational instability. We demonstrate that the orientational instability
leads to the formation of vortices and (for large density and/or kernel
anisotropy) asters seen in recent experiments.Comment: 4 pages, 5 figures, to appear in Phys. Rev. E, Rapid Communication
Pure-state quantum trajectories for general non-Markovian systems do not exist
Since the first derivation of non-Markovian stochastic Schr\"odinger
equations, their interpretation has been contentious. In a recent Letter [Phys.
Rev. Lett. 100, 080401 (2008)], Di\'osi claimed to prove that they generate
"true single system trajectories [conditioned on] continuous measurement". In
this Letter we show that his proof is fundamentally flawed: the solution to his
non-Markovian stochastic Schr\"odinger equation at any particular time can be
interpreted as a conditioned state, but joining up these solutions as a
trajectory creates a fiction.Comment: 4 page
Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis
Rapid-purification by feedback --- specifically, reducing the mean impurity
faster than by measurement alone --- can be achieved by making the eigenbasis
of the density matrix to be unbiased relative to the measurement basis. Here we
further examine the protocol introduced by Combes and Jacobs [Phys.Rev.Lett.
{\bf 96}, 010504 (2006)] involving continuous measurement of the observable
for a -dimensional system. We rigorously re-derive the lower bound
on the achievable speed-up factor, and also an upper bound, namely
, for all feedback protocols that use measurements in unbiased bases.
Finally we extend our results to independent measurements on a register of
qubits, and derive an upper bound on the achievable speed-up factor that
scales linearly with .Comment: v2: published versio
The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments
There has been great interest in applying the results of statistical
mechanics to single molecule experiements. Recent work has highlighted
so-called non-equilibrium work-energy relations and Fluctuation Theorems which
take on an equilibrium-like (time independent) form. Here I give a very simple
heuristic example where an equilibrium result (the barometric law for colloidal
particles) arises from theory describing the {\em thermodynamically}
non-equilibrium phenomenon of a single colloidal particle falling through
solution due to gravity. This simple result arises from the fact that the
particle, even while falling, is in {\em mechanical} equilibrium (gravitational
force equal the viscous drag force) at every instant. The results are
generalized by appeal to the central limit theorem. The resulting time
independent equations that hold for thermodynamically non-equilibrium (and even
non-stationary) processes offer great possibilities for rapid determination of
thermodynamic parameters from single molecule experiments.Comment: 6 page
Bridging the microscopic and the hydrodynamic in active filament solutions
Hydrodynamic equations for an isotropic solution of active polar filaments
are derived from a microscopic mean-field model of the forces exchanged between
motors and filaments. We find that a spatial dependence of the motor stepping
rate along the filament is essential to drive bundle formation. A number of
differences arise as compared to hydrodynamics derived (earlier) from a
mesoscopic model where relative filament velocities were obtained on the basis
of symmetry considerations. Due to the anisotropy of filament diffusion, motors
are capable of generating net filament motion relative to the solvent. The
effect of this new term on the stability of the homogeneous state is
investigated.Comment: 7 pages, 2 figures, submitted to Europhys. Let
A Gapless, Unambiguous Genome Sequence of the Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933.
Escherichia coli EDL933 is the prototypic strain for enterohemorrhagic E. coli serotype O157:H7, associated with deadly food-borne outbreaks. Because the publicly available sequence of the EDL933 genome has gaps and >6,000 ambiguous base calls, we here present an updated high-quality, unambiguous genome sequence with no assembly gaps
- …