31,644 research outputs found

    Reply to Norsen's paper "Are there really two different Bell's theorems?"

    Get PDF
    Yes. That is my polemical reply to the titular question in Travis Norsen's self-styled "polemical response to Howard Wiseman's recent paper." Less polemically, I am pleased to see that on two of my positions --- that Bell's 1964 theorem is different from Bell's 1976 theorem, and that the former does not include Bell's one-paragraph heuristic presentation of the EPR argument --- Norsen has made significant concessions. In his response, Norsen admits that "Bell's recapitulation of the EPR argument in [the relevant] paragraph leaves something to be desired," that it "disappoints" and is "problematic". Moreover, Norsen makes other statements that imply, on the face of it, that he should have no objections to the title of my recent paper ("The Two Bell's Theorems of John Bell"). My principle aim in writing that paper was to try to bridge the gap between two interpretational camps, whom I call 'operationalists' and 'realists', by pointing out that they use the phrase "Bell's theorem" to mean different things: his 1964 theorem (assuming locality and determinism) and his 1976 theorem (assuming local causality), respectively. Thus, it is heartening that at least one person from one side has taken one step on my bridge. That said, there are several issues of contention with Norsen, which we (the two authors) address after discussing the extent of our agreement with Norsen. The most significant issues are: the indefiniteness of the word 'locality' prior to 1964; and the assumptions Einstein made in the paper quoted by Bell in 1964 and their relation to Bell's theorem.Comment: 13 pages (arXiv version) in http://www.ijqf.org/archives/209

    Soil penetrometer

    Get PDF
    An auger-type soil penetrometer for burrowing into soil formations is described. The auger, while initially moving along a predetermined path, may deviate from the path when encountering an obstruction in the soil. Alterations and modifications may be made in the structure so that it may be used for other purposes

    Burrowing apparatus

    Get PDF
    A soil burrowing mole is described in which a housing has an auger blade wound around a front portion. This portion is rotatable about a housing longitudinal axis relative to an externally finned housing rear portion upon operation of driving means to cause an advance through soil and the like. The housing carries a sensor sensitive to deviation from a predetermined path and to which is coupled means for steering the housing to maintain the path

    Analog of the Clauser-Horne-Shimony-Holt inequality for steering

    Full text link
    The Clauser-Horne-Shimony-Holt (CHSH) inequality (and its permutations), are necessary and sufficient criteria for Bell nonlocality in the simplest Bell-nonlocality scenario: 2 parties, 2 measurements per party and 2 outcomes per measurement. Here we derive an inequality for EPR-steering that is an analogue of the CHSH, in that it is necessary and sufficient in this same scenario. However, since in the case of steering the device at Bob's site must be specified (as opposed to the Bell case in which it is a black box), the scenario we consider is that where Alice performs two (black-box) dichotomic measurements, and Bob performs two mutually unbiased qubit measurements. We show that this inequality is strictly weaker than the CHSH, as expected, and use it to decide whether a recent experiment [Phys. Rev. Lett. 110, 130401 (2013).] involving a single-photon split between two parties has demonstrated EPR-steering.Comment: Expanded v2, new results, new figure. 9 pages, 2 figure

    Higgs-regularized three-loop four-gluon amplitude in N=4 SYM: exponentiation and Regge limits

    Full text link
    We compute the three-loop contribution to the N=4 supersymmetric Yang-Mills planar four-gluon amplitude using the recently-proposed Higgs IR regulator of Alday, Henn, Plefka, and Schuster. In particular, we test the proposed exponential ansatz for the four-gluon amplitude that is the analog of the BDS ansatz in dimensional regularization. By evaluating our results at a number of kinematic points, and also in several kinematic limits, we establish the validity of this ansatz at the three-loop level. We also examine the Regge limit of the planar four-gluon amplitude using several different IR regulators: dimensional regularization, Higgs regularization, and a cutoff regularization. In the latter two schemes, it is shown that the leading logarithmic (LL) behavior of the amplitudes, and therefore the lowest-order approximation to the gluon Regge trajectory, can be correctly obtained from the ladder approximation of the sum of diagrams. In dimensional regularization, on the other hand, there is no single dominant set of diagrams in the LL approximation. We also compute the NLL and NNLL behavior of the L-loop ladder diagram using Higgs regularization.Comment: 45 pages, 9 figures; v3: major revision (more stringent tests, discussion of order of limits in the Regge regime

    Serrated trailing edges for improving lift and drag characteristics of lifting surfaces

    Get PDF
    An improvement in the lift and drag characteristics of a lifting surface is achieved by attaching a serrated panel to the trailing edge of the lifting surface. The serrations may have a saw-tooth configuration, with a 60 degree included angle between adjacent serrations. The serrations may vary in shape and size over the span-wise length of the lifting surface, and may be positioned at fixed or adjustable deflections relative to the chord of the lifting surface
    corecore