952 research outputs found
Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems
We present a method for measuring single spins embedded in a solid by probing
two electron systems with a single electron transistor (SET). Restrictions
imposed by the Pauli Principle on allowed two electron states mean that the
spin state of such systems has a profound impact on the orbital states
(positions) of the electrons, a parameter which SET's are extremely well suited
to measure. We focus on a particular system capable of being fabricated with
current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and
lying directly beneath the SET island electrode, and we outline a measurement
strategy capable of resolving single electron and nuclear spins in this system.
We discuss the limitations of the measurement imposed by spin scattering
arising from fluctuations emanating from the SET and from lattice phonons. We
conclude that measurement of single spins, a necessary requirement for several
proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and
small textual changes. Submitted to Phys. Rev.
Red Queen Coevolution on Fitness Landscapes
Species do not merely evolve, they also coevolve with other organisms.
Coevolution is a major force driving interacting species to continuously evolve
ex- ploring their fitness landscapes. Coevolution involves the coupling of
species fit- ness landscapes, linking species genetic changes with their
inter-specific ecological interactions. Here we first introduce the Red Queen
hypothesis of evolution com- menting on some theoretical aspects and empirical
evidences. As an introduction to the fitness landscape concept, we review key
issues on evolution on simple and rugged fitness landscapes. Then we present
key modeling examples of coevolution on different fitness landscapes at
different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and
Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.).
Springer Series in Emergence, Complexity, and Computation, 201
Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white
light a large-scale dome-shaped expanding coronal transient with perfectly
connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57)
concluded that the dome was formed by a weak shock wave. We have revealed two
EUV components, one of which corresponded to this transient. All of its
properties found from EUV, white light, and a metric type II burst match
expectations for a freely expanding coronal shock wave including correspondence
to the fast-mode speed distribution, while the transient sweeping over the
solar surface had a speed typical of EUV waves. The shock wave was presumably
excited by an abrupt filament eruption. Both a weak shock approximation and a
power-law fit match kinematics of the transient near the Sun. Moreover, the
power-law fit matches expansion of the CME leading edge up to 24 solar radii.
The second, quasi-stationary EUV component near the dimming was presumably
associated with a stretched CME structure; no indications of opening magnetic
fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Triggering an eruptive flare by emerging flux in a solar active-region complex
A flare and fast coronal mass ejection originated between solar active
regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in
front of the leading sunspot of the trailing region 11515. Analyzing the
evolution of the photospheric magnetic flux and the coronal structure, we find
that the flux emergence triggered the eruption by interaction with overlying
flux in a non-standard way. The new flux neither had the opposite orientation
nor a location near the polarity inversion line, which are favorable for strong
reconnection with the arcade flux under which it emerged. Moreover, its flux
content remained significantly smaller than that of the arcade (approximately
40 %). However, a loop system rooted in the trailing active region ran in part
under the arcade between the active regions, passing over the site of flux
emergence. The reconnection with the emerging flux, leading to a series of jet
emissions into the loop system, caused a strong but confined rise of the loop
system. This lifted the arcade between the two active regions, weakening its
downward tension force and thus destabilizing the considerably sheared flux
under the arcade. The complex event was also associated with supporting
precursor activity in an enhanced network near the active regions, acting on
the large-scale overlying flux, and with two simultaneous confined flares
within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and
Stellar Flares. 25 pages, 12 figure
Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses
The reach of the Fermilab Tevatron for supersymmetric matter has been
calculated in the framework of the minimal supergravity model in the clean
trilepton channel. Previous analyses of this channel were restricted to scalar
masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses
m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point
(HB/FP) region, where the superpotential \mu parameter becomes small. In this
region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated
luminosity, the Tevatron reach in the trilepton channel extends up to
m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a
reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected
and references adde
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
Nonequilibrium wetting
When a nonequilibrium growing interface in the presence of a wall is
considered a nonequilibrium wetting transition may take place. This transition
can be studied trough Langevin equations or discrete growth models. In the
first case, the Kardar-Parisi-Zhang equation, which defines a very robust
universality class for nonequilibrium moving interfaces, with a soft-wall
potential is considered. While in the second, microscopic models, in the
corresponding universality class, with evaporation and deposition of particles
in the presence of hard-wall are studied. Equilibrium wetting is related to a
particular case of the problem, it corresponds to the Edwards-Wilkinson
equation with a potential in the continuum approach or to the fulfillment of
detailed balance in the microscopic models. In this review we present the
analytical and numerical methods used to investigate the problem and the very
rich behavior that is observed with them.Comment: Review, 36 pages, 16 figure
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
A longitudinal study of intonation in an a cappella singing quintet
Objective
The skill to control pitch accurately is an important feature of performance in singing ensembles as it boosts musical excellence. Previous studies analyzing single performance sessions provide inconclusive and contrasting results on whether singers in ensembles tend to use a tuning system which deviates from equal temperament for their intonation. The present study observes the evolution of intonation in a newly formed student singing quintet during their first term of study.
Methods/Design
A semiprofessional singing quintet was recorded using head-worn microphones and electrolaryngograph electrodes to allow fundamental frequency (fo) evaluation of the individual voices. In addition, a camcorder was used to record verbal interactions between singers. The ensemble rehearsed a homophonic piece arranged for the study during five rehearsal sessions over four months. Singers practiced the piece for 10 minutes in each rehearsal, and performed three repetitions of the same pieces pre-rehearsal and post-rehearsal. Audio and electrolaryngograph data of the repeated performances, and video recordings of the rehearsals were analyzed. Aspects of intonation were then measured by extracting the fo values from the electrolaryngograph and acoustic signal, and compared within rehearsals (pre and post) and between rehearsals (rehearsals 1 to 5), and across repetitions (take 1 to 3). Time-stamped transcriptions of rehearsal discussions were used to identify verbal interactions related to tuning, the tuning strategies adopted, and their location (bar or chord) within the piece.
Results/Discussion
Tuning of each singer was closer to equal temperament than just intonation, but the size of major thirds was slightly closer to just intonation, and minor thirds closer to equal temperament. These findings were consistent within and between rehearsals, and across repetitions. Tuning was highlighted as an important feature of rehearsal during the study term, and a range of strategies were adopted to solve tuning related issues. This study provides a novel holistic assessment of tuning strategies within a singing ensemble, furthering understanding of performance practices as well as revealing the complex approach needed for future research in this area. These findings are particularly important for directors and singers to tailor rehearsal strategies that address tuning in singing ensembles, showing that approaches need to be context driven rather than based on theoretical ideal
A Parametric Study of Erupting Flux Rope Rotation. Modeling the "Cartwheel CME" on 9 April 2008
The rotation of erupting filaments in the solar corona is addressed through a
parametric simulation study of unstable, rotating flux ropes in bipolar
force-free initial equilibrium. The Lorentz force due to the external shear
field component and the relaxation of tension in the twisted field are the
major contributors to the rotation in this model, while reconnection with the
ambient field is of minor importance. Both major mechanisms writhe the flux
rope axis, converting part of the initial twist helicity, and produce rotation
profiles which, to a large part, are very similar in a range of shear-twist
combinations. A difference lies in the tendency of twist-driven rotation to
saturate at lower heights than shear-driven rotation. For parameters
characteristic of the source regions of erupting filaments and coronal mass
ejections, the shear field is found to be the dominant origin of rotations in
the corona and to be required if the rotation reaches angles of order 90
degrees and higher; it dominates even if the twist exceeds the threshold of the
helical kink instability. The contributions by shear and twist to the total
rotation can be disentangled in the analysis of observations if the rotation
and rise profiles are simultaneously compared with model calculations. The
resulting twist estimate allows one to judge whether the helical kink
instability occurred. This is demonstrated for the erupting prominence in the
"Cartwheel CME" on 9 April 2008, which has shown a rotation of \approx 115
degrees up to a height of 1.5 R_sun above the photosphere. Out of a range of
initial equilibria which include strongly kink-unstable (twist Phi=5pi), weakly
kink-unstable (Phi=3.5pi), and kink-stable (Phi=2.5pi) configurations, only the
evolution of the weakly kink-unstable flux rope matches the observations in
their entirety.Comment: Solar Physics, submitte
- …
