444 research outputs found

    The interaction of unidirectional winds with an isolated barchan sand dune

    Get PDF
    Velocity profile measurements are determined on and around a barchan dune model inserted in the roughness layer on the tunnel floor. A theoretical investigation is made into the factors influencing the rate of sand flow around the dune. Flow visualization techniques are employed in the mapping of streamlines of flow on the dune's surface. Maps of erosion and deposition of sand are constructed for the barchan model, utilizing both flow visualization techniques and friction velocities calculated from the measured velocity profiles. The sediment budget found experimentally for the model is compared to predicted and observed results reported. The comparison shows fairly good agreement between the experimentally determined and predicted sediment budgets

    Simulation model of erosion and deposition on a barchan dune

    Get PDF
    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity

    Intrepretation of surface features and surface processes on Mars

    Get PDF
    Eolian erosion and deposition on earth was studied in order to interpret the eolian land forms of Mars. Emphasis of the wind tunnel studies was on the flow field around models of eolian forms. Areas of the wind tunnel studies include: simulation of the atmospheric boundary layer; velocity profile measurements around different models in the desert boundary layer, and estimating shear stress distributions on the model surfaces; flow visualization techniques; streamline mapping using tuft photographs; and roughness contrasts

    Probing Minimal Supergravity at the CERN LHC for Large tanβ\tan\beta

    Get PDF
    For large values of the minimal supergravity model parameter tanβ\tan\beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of τ\tau-sleptons and bb-squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to τ\tau-leptons and bb-quarks. We evaluate the reach of the CERN LHC pppp collider for supersymmetry in the mSUGRA model parameter space. We find that values of mtg15002000m_{\tg}\sim 1500-2000 GeV can be probed with just 10 fb1^{-1} of integrated luminosity for tanβ\tan\beta values as high as 45, so that mSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tanβ\tan\beta. We also perform a case study of an mSUGRA model at tanβ=45\tan\beta =45 where \tz_2\to \tau\ttau_1 and \tw_1\to \ttau_1\nu_\tau with 100\sim 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m_{\tz_2}-m_{\tz_1}, can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tanβ\tan\beta there can be an observable excess of τ\tau leptons, and argue that τ\tau signals might serve to provide new information about the underlying model framework.Comment: 22 page REVTEX file including 8 figure

    Foraging Behavior under Starvation Conditions Is Altered via Photosynthesis by the Marine Gastropod, Elysia clarki

    Get PDF
    It has been well documented that nutritional state can influence the foraging behavior of animals. However, photosynthetic animals, those capable of both heterotrophy and symbiotic photosynthesis, may have a delayed behavioral response due to their ability to photosynthesize. To test this hypothesis we subjected groups of the kleptoplastic sea slug, Elysia clarki, to a gradient of starvation treatments of 4, 8, and 12 weeks plus a satiated control. Compared to the control group, slugs starved 8 and 12 weeks displayed a significant increase in the proportion of slugs feeding and a significant decrease in photosynthetic capability, as measured in maximum quantum yield and [chl a]. The 4 week group, however, showed no significant difference in feeding behavior or in the metrics of photosynthesis compared to the control. This suggests that photosynthesis in E. clarki, thought to be linked to horizontally-transferred algal genes, delays a behavioral response to starvation. This is the first demonstration of a link between photosynthetic capability in an animal and a modification of foraging behavior under conditions of starvation

    Sparticle Mass Spectra from SO(10) Grand Unified Models with Yukawa Coupling Unification

    Full text link
    We examine the spectrum of superparticles obtained from the minimal SO(10) grand unified model, where it is assumed the gauge symmetry breaking yields the Minimal Supersymmetric Standard Model (MSSM) as the effective theory at MGUT2×1016M_{GUT}\sim 2\times 10^{16} GeV. In this model, unification of Yukawa couplings implies a value of tanβ4555\tan\beta\sim 45-55. At such high values of tanβ\tan\beta, assuming universality of scalar masses, the usual mechanism of radiative electroweak symmetry breaking breaks down. We show that a set of weak scale sparticle masses consistent with radiative electroweak symmetry breaking can be generated by imposing non-universal GUT scale scalar masses consistent with universality within SO(10) plus extra DD-term contributions associated with the reduction in rank of the gauge symmetry group when SO(10) spontaneously breaks to SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1). We comment upon the consequences of the sparticle mass spectrum for collider searches for supersymmetry. One implication of SO(10) unification is that the light bottom squark can be by far the lightest of the squarks. This motivates a dedicated search for bottom squark pair production at ppˉp\bar{p} and e+ee^+e^- colliders.Comment: 12 page REVTEX file including 3 PS figures; revised manuscript includes minor changes to coincide with published versio

    The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit

    Get PDF
    A CP-even neutral Higgs boson with Standard-Model-like couplings may be the lightest scalar of a two-Higgs-doublet model. We study the decoupling limit of the most general CP-conserving two-Higgs-doublet model, where the mass of the lightest Higgs scalar is significantly smaller than the masses of the other Higgs bosons of the model. In this case, the properties of the lightest Higgs boson are nearly indistinguishable from those of the Standard Model Higgs boson. The first non-trivial corrections to Higgs couplings in the approach to the decoupling limit are also evaluated. The importance of detecting such deviations in precision Higgs measurements at future colliders is emphasized. We also clarify the case in which a neutral Higgs boson can possess Standard-Model-like couplings in a regime where the decoupling limit does not apply. The two-Higgs-doublet sector of the minimal supersymmetric model illustrates many of the above features.Comment: 54 pages, 2 tables, revtex4 format, some new material added (including elegant forms for the three-Higgs and four-Higgs couplings) and typographical errors fixe

    The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models

    Get PDF
    In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m1/2m_{1/2} is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale McM_c beyond the GUT scale, and that additional renormalization group running takes place between McM_c and MGUTM_{GUT} as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. At the CERN LHC, values of m1/2=1000m_{1/2}=1000 (1160) GeV can be probed with 10 (100) fb1^{-1} of integrated luminosity, corresponding to a reach in terms of mtgm_{\tg} of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely only be differentiated at a linear e+ee^+e^- collider with sufficient energy to produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde
    corecore