17 research outputs found

    An administrator competency in equity and diversity : new frames of reference and training : an executive summary

    Full text link
    Ce document est une traduction de : Synthèse du rapport "Les compétences des directions en matière d’équité et de diversité : pistes pour les cadres de référence et la formation" du Groupe de travail sur les compétences et la formation des directions en matière d’équité et de diversité

    Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to SARS-CoV-2 infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished COVID-19 severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalised with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days post-symptom onset) or late (6-20 days post-symptom onset). Results Patients that survived severe COVID-19 showed IFN-dominated mucosal immune responses (IFN-γ, CXCL10 and CXCL13) early in infection. These early mucosal responses were absent in patients that would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by IL-2, IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal anti-viral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19

    Probability of major depression classification based on the SCID, CIDI, and MINI diagnostic interviews: A synthesis of three individual participant data meta-analyses

    No full text
    Introduction: Three previous individual participant data meta-analyses (IPDMAs) reported that, compared to the Structured Clinical Interview for the DSM (SCID), alternative reference standards, primarily the Composite International Diagnostic Interview (CIDI) and the Mini International Neuropsychiatric Interview (MINI), tended to misclassify major depression status, when controlling for depression symptom severity. However, there was an important lack of precision in the results. Objective: To compare the odds of the major depression classification based on the SCID, CIDI, and MINI. Methods: We included and standardized data from 3 IPDMA databases. For each IPDMA, separately, we fitted binomial generalized linear mixed models to compare the adjusted odds ratios (aORs) of major depression classification, controlling for symptom severity and characteristics of participants, and the interaction between interview and symptom severity. Next, we synthesized results using a DerSimonian-Laird random-effects meta-analysis. Results: In total, 69,405 participants (7,574 [11%] with major depression) from 212 studies were included. Controlling for symptom severity and participant characteristics, the MINI (74 studies; 25,749 participants) classified major depression more often than the SCID (108 studies; 21,953 participants; aOR 1.46; 95% confidence interval [CI] 1.11-1.92]). Classification odds for the CIDI (30 studies; 21,703 participants) and the SCID did not differ overall (aOR 1.19; 95% CI 0.79-1.75); however, as screening scores increased, the aOR increased less for the CIDI than the SCID (interaction aOR 0.64; 95% CI 0.52-0.80). Conclusions: Compared to the SCID, the MINI classified major depression more often. The odds of the depression classification with the CIDI increased less as symptom levels increased. Interpretation of research that uses diagnostic interviews to classify depression should consider the interview characteristics.</p

    State of the climate in 2015

    No full text
    In 2015, the dominant greenhouse gases released into Earth\u2019s atmosphere\u2014carbon dioxide, methane, and nitrous oxide\u2014all continued to reach new high levels. At Mauna Loa, Hawaii, the annual CO2 concentration increased by a record 3.1 ppm, exceeding 400 ppm for the first time on record. The 2015 global CO2 average neared this threshold, at 399.4 ppm. Additionally, one of the strongest El Ni\uf1o events since at least 1950 developed in spring 2015 and continued to evolve through the year. The phenomenon was far reaching, impacting many regions across the globe and affecting most aspects of the climate system. Owing to the combination of El Ni\uf1o and a long-term upward trend, Earth observed record warmth for the second consecutive year, with the 2015 annual global surface temperature surpassing the previous record by more than 0.1\ub0C and exceeding the average for the mid- to late 19th century\u2014commonly considered representative of preindustrial conditions\u2014by more than 1\ub0C for the first time. Above Earth\u2019s surface, lower troposphere temperatures were near-record high. Across land surfaces, record to near-record warmth was reported across every inhabited continent. Twelve countries, including Russia and China, reported record high annual temperatures. In June, one of the most severe heat waves since 1980 affected Karachi, Pakistan, claiming over 1000 lives. On 27 October, Vredendal, South Africa, reached 48.4\ub0C, a new global high temperature record for this month. In the Arctic, the 2015 land surface temperature was 1.2\ub0C above the 1981\u20132010 average, tying 2007 and 2011 for the highest annual temperature and representing a 2.8\ub0C increase since the record began in 1900. Increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 25 February 2015, the lowest maximum sea ice extent in the 37-year satellite record was observed, 7% below the 1981\u20132010 average. Mean sea surface temperatures across the Arctic Ocean during August in ice-free regions, representative of Arctic Ocean summer anomalies, ranged from ~0\ub0C to 8\ub0C above average. As a consequence of sea ice retreat and warming oceans, vast walrus herds in the Pacific Arctic are hauling out on land rather than on sea ice, raising concern about the energetics of females and young animals. Increasing temperatures in the Barents Sea are linked to a community-wide shift in fish populations: boreal communities are now farther north, and long-standing Arctic species have been almost pushed out of the area. Above average sea surface temperatures are not confined to the Arctic. Sea surface temperature for 2015 was record high at the global scale; however, the North Atlantic southeast of Greenland remained colder than average and colder than 2014. Global annual ocean heat content and mean sea level also reached new record highs. The Greenland Ice Sheet, with the capacity to contribute ~7 m to sea level rise, experienced melting over more than 50% of its surface for the first time since the record melt of 2012. Other aspects of the cryosphere were remarkable. Alpine glacier retreat continued, and preliminary data indicate that 2015 is the 36th consecutive year of negative annual mass balance. Across the Northern Hemisphere, late-spring snow cover extent continued its trend of decline, with June the second lowest in the 49-year satellite record. Below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska, increasing by up to 0.66\ub0C decade\u20131 since 2000. In the Antarctic, surface pressure and temperatures were lower than the 1981\u20132010 average for most of the year, consistent with the primarily positive southern annular mode, which saw a record high index value of +4.92 in February. Antarctic sea ice extent and area had large intra-annual variability, with a shift from record high levels in May to record low levels in August. Springtime ozone depletion resulted in one of the largest and most persistent Antarctic ozone holes observed since the 1990s. Closer to the equator, 101 named tropical storms were observed in 2015, well above the 1981\u20132010 average of 82. The eastern/central Pacific had 26 named storms, the most since 1992. The western north Pacific and north and south Indian Ocean basins also saw high activity. Globally, eight tropical cyclones reached the Saffir\u2013Simpson Category 5 intensity level. Overlaying a general increase in the hydrologic cycle, the strong El Ni\uf1o enhanced precipitation variability around the world. An above-normal rainy season led to major floods in Paraguay, Bolivia, and southern Brazil. In May, the United States recorded its all-time wettest month in its 121-year national record. Denmark and Norway reported their second and third wettest year on record, respectively, but globally soil moisture was below average, terrestrial groundwater storage was the lowest in the 14-year record, and areas in \u201csevere\u201d drought rose from 8% in 2014 to 14% in 2015. Drought conditions prevailed across many Caribbean island nations, Colombia, Venezuela, and northeast Brazil for most of the year. Several South Pacific countries also experienced drought. Lack of rainfall across Ethiopia led to its worst drought in decades and affected millions of people, while prolonged drought in South Africa severely affected agricultural production. Indian summer monsoon rainfall was just 86% of average. Extremely dry conditions in Indonesia resulted in intense and widespread fires during August\u2013November that produced abundant carbonaceous aerosols, carbon monoxide, and ozone. Overall, emissions from tropical Asian biomass burning in 2015 were almost three times the 2001\u201314 average
    corecore