3,699 research outputs found

    Taking a “Deep Dive”: What Only a Top Leader Can Do

    Get PDF
    Unlike most historical accounts of strategic change inside large firms, empirical research on strategic management rarely uses the day-to-day behaviors of top executives as the unit of analysis. By examining the resource allocation process closely, we introduce the concept of a deep dive, an intervention when top management seizes hold of the substantive content of a strategic initiative and its operational implementation at the project level, as a way to drive new behaviors that enable an organization to shift its performance trajectory into new dimensions unreachable with any of the previously described forms of intervention. We illustrate the power of this previously underexplored change mechanism with a case study, in which a well-established firm overcame barriers to change that were manifest in a wide range of organizational routines and behavioral norms that had been fostered by the pre-existing structural context of the firm.Strategic Change, Resource Allocation Process, Top-down Intervention

    Our Modern Navy

    Get PDF
    The Kennedy Center American Theater Festival recognized Cedarville University’s fall production, “The Diary of Anne Frank,” with five certificates of merit and two Irene Ryan Acting Award nominations

    Our Modern Navy

    Get PDF

    Hydrological controls of in situ preservation of waterlogged archaeological deposits

    Get PDF
    Environmental change caused by urban development, land drainage, agriculture or climate change may result in accelerated decay of in situ archaeological remains. This paper reviews research into impacts of environmental change on hydrological processes of relevance to preservation of archaeological remains in situ. It compares work at rural sites with more complex urban environments. The research demonstrates that both the quantity and quality of data on preservation status, and hydrological and chemical parameters collected during routine archaeological surveys need to be improved. The work also demonstrates the necessity for any archaeological site to be placed within its topographic and geological context. In order to understand preservation potential fully, it is necessary to move away from studying the archaeological site as an isolated unit, since factors some distance away from the site of interest can be important for determining preservation. The paper reviews what is known about the hydrological factors of importance to archaeological preservation and recommends research that needs to be conducted so that archaeological risk can be more adequately predicted and mitigated. Any activity that changes either source pathways or the dominant water input may have an impact not just because of changes to the water balance or the water table, but because of changes to water chemistry. Therefore, efforts to manage threatened waterlogged environments must consider the chemical nature of the water input into the system. Clearer methods of assessing the degree to which buried archaeological sites can withstand changing hydrological conditions are needed, in addition to research which helps us understand what triggers decay and what controls thresholds of response for different sediments and types of artefact

    Mechanochemical activation of zinc and application to Negishi cross-coupling

    Get PDF
    A form independent activation of zinc, concomitant generation of organozinc species and engagement in a Negishi cross‐coupling reaction via mechanochemical methods is reported. The reported method exhibits a broad substrate scope for both C(sp3)–C(sp2) and C(sp2)–C(sp2) couplings and is tolerant to many important functional groups. The method may offer broad reaching opportunities for the in situ generation organometallic compounds from base metals and their concomitant engagement in synthetic reactions via mechanochemical methods

    One-pot multistep mechanochemical synthesis of fluorinated pyrazolones

    Get PDF
    Solventless mechanochemical synthesis represents a technique with improved sustainability metrics compared to solvent-based processes. Herein, we describe a methodical process to run one solventless reaction directly into another through multistep mechanochemistry, effectively amplifying the solvent savings. The approach has to consider the solid form of the materials and compatibility of any auxiliary used. This has culminated in the development of a two-step, one-jar protocol for heterocycle formation and subsequent fluorination that has been successfully applied across a range of substrates, resulting in 12 difluorinated pyrazolones in moderate to excellent yields

    Preparation of difluoromethylthioethers through difluoromethylation of disulfides using TMS-CF2H

    Get PDF
    We report an operationally simple, metal-free approach for the late-stage introduction of the important lipophilic hydrogen-bond donor motif, SCF2H. This reaction converts diaryl- and dialkyl-disulfides into the corresponding aryl/alkyl–SCF2H through the nucleophilic transfer of a difluoromethyl group with good functional group tolerance. This method is notable for its use of commercially available TMSCF2H, and does not rely on the need for handling of sensitive metal complexes
    corecore