61 research outputs found

    Measurement and prediction of deformation in plane strain compression tests of AA5182

    No full text
    The present paper concerns the numerical prediction and experimental measurement of the distribution of strain in a plane strain compression test by means of a gridded insert. The insert was engraved with a 1 x 1 mm grid pitch and was embedded in an AA5182 sample. The tests were performed at 400°C with a reduction ratio of -20% and at a strain rate of 0·7 s-1. A thermocouple was used to record the temperature during the test. After the test, no detachment was observed between insert and sample, suggesting a close contact between them. The shape of the grid after deformation was analysed, and the in-plane component of the plastic strain calculated and compared with the numerical results obtained through finite element modelling of the test. In a comparison between experimental data and the results of a finite element (FE) model of the test that assumed perfect tool alignment, the fields of temperature agreed very well, while that for the in-plane component of strain was reasonable but inaccurate. However, significant misalignment of the tools was found in the experiments (a common occurrence in plane strain compression testing). When comparison was made with an FE model that included the geometry of the tool misalignment, the agreement was excellent. The paper discusses these effects and others such as the influence of 3D effects in the modelling

    Microstructure modelling of hot deformation of Al–1%Mg alloy

    Get PDF
    This study presents the application of the finite elementmethod and intelligent systems techniques to the prediction of microstructural mapping for aluminium alloys. Here, the material within each finite element is defined using a hybrid model. The hybrid model is based on neuro-fuzzy and physically based components and it has been combined with the finite element technique. The model simulates the evolution of the internal state variables (i.e. dislocation density, subgrain size and subgrain boundary misorientation) and their effect on the recrystallisation behaviour of the stock. This paper presents the theory behind the model development, the integration between the numerical techniques, and the application of the technique to a hot rolling operation using aluminium, 1 wt% magnesium alloy. Furthermore, experimental data from plane strain compression (PSC) tests and rolling are used to validate the modelling outcome. The results show that the recrystallisation kinetics agree well with the experimental results for different annealing times. This hybrid approach has proved to be more accurate than conventional methods using empirical equations

    Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor

    Get PDF
    Available online 5 May 2020Carbon Capture, Utilisation and Storage (CCUS) technologies are utilised to minimise net CO2 emissions and hence mitigate the impact of anthropogenic emissions on the global climate. One example of CO2 utilisation is the production of carbon-neutral methane fuel via catalytic CO2 reduction with H2 (methanation). Thermal activation of a metal impregnated metal-organic framework (MOF), 1 wt%Ru/UiO-66 in the presence of H2 and CO2 provides in situ synthesis of a highly active methanation catalyst: H2 promotes the formation of Ru0 nanoparticles, and CO2 behaves as a mild oxidant to remove framework carbon and promote ZrO2 crystallisation. The nature of the active MOF-derived Ru0/ZrO2 catalyst was studied by PXRD, TEM, and XAS, and the evolution of the parent 1 wt%Ru/UiO-66 during thermal activation monitored in operando by synchrotron PXRD. The Ru impregnated Zr-based MOF collapses on heating in H2 and CO2 to form an amorphous C and Zr containing phase that subsequently crystallises as tetragonal (t-) ZrO2 nanoparticles. These t-ZrO2 nanoparticles undergo a subsequent phase transition to the more stable monoclinic (m-) ZrO2 polymorph. In situ activation of Ru/UiO-66 generates a highly active catalyst for CO2 methanation by transforming the MOF precursor into a (carbonfree) crystalline t-ZrO2 support that stabilises highly dispersed metallic Ru nanoparticles. This insight may guide the rational design of future MOF-derived catalystsRenata Lippi, Anita M. D, Angelo, Chaoen Li, Shaun C. Howard, Ian C. Madsen, Karen Wilson, Adam F. Lee, Christopher J. Sumby, Christian J. Doonan, Jim Patel, Danielle F. Kenned

    Mechanics of Structured Media

    No full text

    Load bearing fibre composites

    No full text

    On the use of dugdale type models in anti-plane strain

    No full text
    • …
    corecore