809 research outputs found

    Discovery and Atmospheric Characterization of Giant Planet Kepler-12b: An Inflated Radius Outlier

    Get PDF
    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 ± 0.030 R_J is among the handful of planets with super-inflated radii above 1.65 R_J. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 ± 0.041 M_J planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 ± 0.010 g cm^(–3). We detect the occultation of the planet at a significance of 3.7σ in the Kepler bandpass. This yields a geometric albedo of 0.14 ± 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7σ and 4σ in the 3.6 and 4.5 μm bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1σ) and e < 0.09 (3σ). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets

    Kepler-1656b: a Dense Sub-Saturn With an Extreme Eccentricity

    Get PDF
    Kepler-1656b is a 5 RER_E planet with an orbital period of 32 days initially detected by the prime Kepler mission. We obtained precision radial velocities of Kepler-1656 with Keck/HIRES in order to confirm the planet and to characterize its mass and orbital eccentricity. With a mass of 48±4ME48 \pm 4 M_E, Kepler-1656b is more massive than most planets of comparable size. Its high mass implies that a significant fraction, roughly 80%, of the planet's total mass is in high density material such as rock/iron, with the remaining mass in a low density H/He envelope. The planet also has a high eccentricity of 0.84±0.010.84 \pm 0.01, the largest measured eccentricity for any planet less than 100 MEM_E. The planet's high density and high eccentricity may be the result of one or more scattering and merger events during or after the dispersal of the protoplanetary disk.Comment: 10 pages, 6 figures, published in The Astronomical Journa

    The California Legacy Survey IV. Lonely, Poor, and Eccentric: A Comparison Between Solitary and Neighborly Gas Giants

    Full text link
    We compare systems with single giant planets to systems with multiple giant planets using a catalog of planets from a high-precision radial velocity survey of FGKM stars. Our comparison focuses on orbital properties, planet masses, and host star properties. We use hierarchical methods to model the orbital eccentricity distributions of giant singles and giant multis, and find that the distributions are distinct. The multiple giant planets typically have moderate eccentricities and their eccentricity distribution extends to e=0.47e=0.47 (90th percentile), while the single giant planets have a pile-up of nearly circular orbits and a long tail that extends to e=0.77e=0.77. We determine that stellar hosts of multiple giants are distinctly more metal-rich than hosts of solitary giants, with respective mean metallicities 0.228±0.0270.228\pm0.027 vs. 0.129±0.0190.129\pm0.019 dex. We measure the distinct occurrence distributions of single and multiple giants with respect to orbital separation, and find that single gas giants have a \sim2.3σ\sigma significant hot (a<0.06a<0.06) Jupiter pile-up not seen among multi giant systems. We find that the median mass (\msini ) of giants in multiples is nearly double that of single giants (1.71 \mjup vs. 0.92 \mjup ). We find that giant planets in the same system have correlated masses, analogous to the `peas in a pod' effect seen among less massive planets

    HAT-P-11: Discovery of a Second Planet and a Clue to Understanding Exoplanet Obliquities

    Get PDF
    HAT-P-11 is a mid-K dwarf that hosts one of the first Neptune-sized planets found outside the solar system. The orbit of HAT-P-11b is misaligned with the star's spin --- one of the few known cases of a misaligned planet orbiting a star less massive than the Sun. We find an additional planet in the system based on a decade of precision radial velocity (RV) measurements from Keck/HIRES. HAT-P-11c is similar to Jupiter in its mass (MPsini=1.6±0.1M_P \sin{i} = 1.6\pm0.1 MJM_J) and orbital period (P=9.30.5+1.0P = 9.3^{+1.0}_{-0.5} year), but has a much more eccentric orbit (e=0.60±0.03e=0.60\pm0.03). In our joint modeling of RV and stellar activity, we found an activity-induced RV signal of \sim7 m s1^{-1}, consistent with other active K dwarfs, but significantly smaller than the 31 m s1^{-1} reflex motion due to HAT-P-11c. We investigated the dynamical coupling between HAT-P-11b and c as a possible explanation for HAT-P-11b's misaligned orbit, finding that planet-planet Kozai interactions cannot tilt planet b's orbit due to general relativistic precession; however, nodal precession operating on million year timescales is a viable mechanism to explain HAT-P-11b's high obliquity. This leaves open the question of why HAT-P-11c may have such a tilted orbit. At a distance of 38 pc, the HAT-P-11 system offers rich opportunities for further exoplanet characterization through astrometry and direct imaging.Comment: 16 pages, 11 figures, 4 tables. Accepted to A

    Hubble Space Telescope Near-IR Transmission Spectroscopy of the Super-Earth HD 97658b

    Get PDF
    Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1-10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope near-infrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3's scanning mode to measure the wavelength-dependent transit depth in thirty individual bandpasses. Our averaged differential transmission spectrum has a median 1 sigma uncertainty of 23 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 10 sigma level. They are consistent at the 0.4 sigma level with a flat line model, as well as effectively flat models corresponding to a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of 10 mbar or higher.Comment: ApJ in press; revised version includes an updated orbital ephemeris for the plane

    An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b

    Get PDF
    GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple JWST GTO programs. Here, we report the first space-based optical transmission spectrum of the planet using two HST/STIS transit observations from 0.53-1.03 microns. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 microns. The spectrum is indicative of moderate to high metallicity (~100-1000x solar) while moderate metallicity scenarios (~100x solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 microns in the transmission spectra of 3 different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b's atmosphere.Comment: 20 pages, 11 figures, 5 tables, Accepted to AJ. A full version of table 1 is included as table1_mrt.tx

    3.6 and 4.5 μ\mum Spitzer{\it Spitzer} Phase Curves of the Highly-Irradiated Hot Jupiters WASP-19b and HAT-P-7b

    Get PDF
    We analyze full-orbit phase curve observations of the transiting hot Jupiters WASP-19b and HAT-P-7b at 3.6 and 4.5 μ\mum obtained using the Spitzer Space Telescope. For WASP-19b, we measure secondary eclipse depths of 0.485%±0.024%0.485\%\pm 0.024\% and 0.584%±0.029%0.584\%\pm 0.029\% at 3.6 and 4.5 μ\mum, which are consistent with a single blackbody with effective temperature 2372±602372 \pm 60 K. The measured 3.6 and 4.5 μ\mum secondary eclipse depths for HAT-P-7b are 0.156%±0.009%0.156\%\pm 0.009\% and 0.190%±0.006%0.190\%\pm 0.006\%, which are well-described by a single blackbody with effective temperature 2667±572667\pm 57 K. Comparing the phase curves to the predictions of one-dimensional and three-dimensional atmospheric models, we find that WASP-19b's dayside emission is consistent with a model atmosphere with no dayside thermal inversion and moderately efficient day-night circulation. We also detect an eastward-shifted hotspot, suggesting the presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside emission suggests a dayside thermal inversion and relatively inefficient day-night circulation; no hotspot shift is detected. For both planets, these same models do not agree with the measured nightside emission. The discrepancies in the model-data comparisons for WASP-19b might be explained by high-altitude silicate clouds on the nightside and/or high atmospheric metallicity, while the very low 3.6 μ\mum nightside planetary brightness for HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond albedos of 0 (<0.08<0.08 at 1σ1\sigma) and 0.38±0.060.38\pm 0.06 for WASP-19b and HAT-P-7b, respectively. In the context of other planets with thermal phase curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of decreasing day-night heat recirculation with increasing irradiation.Comment: 22 pages, 29 figures, accepted by Ap
    corecore