33,616 research outputs found

    A lightweight, high output soil sampler

    Get PDF
    Sampler is useful on or under earth's surface or on sea bottom. Larger sample amount is obtained relative to sampler size and weight and limited particle size sample material is continuously delivered. Silicone rubber linear in transport tube nearly eliminates grinding or particulate processing during sampling, and reduces required torque

    Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    Get PDF
    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona

    Lunar analogs of fluvial landscapes - Possible implications, 1 March 1968 - 1 February 1970

    Get PDF
    Geomorphic approach to possibility of fluid erosion on moo

    Soil penetrometer

    Get PDF
    An auger-type soil penetrometer for burrowing into soil formations is described. The auger, while initially moving along a predetermined path, may deviate from the path when encountering an obstruction in the soil. Alterations and modifications may be made in the structure so that it may be used for other purposes

    Burrowing apparatus

    Get PDF
    A soil burrowing mole is described in which a housing has an auger blade wound around a front portion. This portion is rotatable about a housing longitudinal axis relative to an externally finned housing rear portion upon operation of driving means to cause an advance through soil and the like. The housing carries a sensor sensitive to deviation from a predetermined path and to which is coupled means for steering the housing to maintain the path

    Solar Magnetic Tracking. IV. The Death of Magnetic Features

    Full text link
    The removal of magnetic flux from the quiet-sun photosphere is important for maintaining the statistical steady-state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected into the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux. We used the SWAMIS feature tracking code to understand how nearly 20000 detected magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously-detected flux so that it is too small and too weak to be detected. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 h, is 3 times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.Comment: Accepted by Ap
    corecore