2,244 research outputs found

    ESP32: QEMU Emulation within a Docker Container

    Full text link
    The ESP32 is a popular microcontroller from Espressif that can be used in many embedded applications. Robotic joints, smart car chargers, beer vat agitators and automated bread mixers are a few examples where this system-on-a-chip excels. It is cheap to buy and has a number of vendors providing low-cost development board kits that come with the microcontroller and many external connection points with peripherals. There is a large software ecosystem for the ESP32. Espressif maintains an SDK containing many C-language sample projects providing a starting point for a huge variety of software services and I/O needs. Third party projects provide additional sample code as well as support for other programming languages. For example, MicroPython is a mature project with sample code and officially supported by Espressif. The SDK provides tools to not just build an application but also merge a flash image, flash to the microcontroller and monitor the output. Is it possible to build the ESP32 load and emulate on another host OS? This paper explores the QEMU emulator and its ability to emulate the ethernet interface for the guest OS. Additionally, we look into the concept of containerizing the entire emulator and ESP32 load package such that a microcontroller flash image can successfully run with a one-step deployment of a Docker container.Comment: 7 pages and 9 figure

    Purdue Crop Budget (Model B-96)

    Get PDF

    Effects of Cultured Adrenal Chromaffin Cell Implants on Hindlimb Reflexes of the 6-OHDA Lesioned Rat

    Get PDF
    The effects of implantation of cultured adrenal medullary cells on the recovery of neurotransmitter specific reflex activity were studied in the rat spinal cord using electrophysiological testing methods. Cell suspensions of cultured neonatal adrenal medullary chromaffin (AM) cells (which produce catecholamines), or Schwann (Sc) cells (controls) were implanted into the lumbar region of the spinal cord 2 weeks after catecholamine (CA) denervation by intracisternal injection of 6-hydroxydopamine (6-OHDA). All cells were taken from 7 day neonates and cultured for 10 days in the presence of nerve growth factor (NGF). Three months after implantation, the extent of implant-associated recovery of reflex activity was determined by measuring electromyogram (EMG) activity and force associated with the long latency component of the hindlimb withdrawal reflex (which is CA modulated). After the electrophysiological testing, rats were anesthetized, and the spinal cords were rapidly removed and frozen. Spinal cords were sectioned longitudinally, and implanted cells were visualized using glyoxylic acid techniques. Labelled sections were examined to determine cell survival. Results indicate that 1) chromaffin cells survive for 3 months in the segments of the cord into which they have been implanted and 2) rats implanted with AM cells have significantly more forceful withdrawal reflexes than those that received Sc cells or received no implant after lesioning

    Achieving energy resilience through smart storage of solar electricity at dwelling and community level

    Get PDF
    This paper empirically evaluates the extent of energy resilience achieved in a socially-deprived community in Oxford, through deployment of solar photovoltaic (PV) systems and smart batteries (internet enabled and controllable) across a cluster of 82 dwellings (households). The methodological approach comprised dwelling and household surveys, along with high frequency monitoring of household electricity consumption, solar PV generation, battery charge and discharge data. In the monitored households, average daily electricity consumption was found to be positively related with dwelling size, number of occupants and number of appliances used. Although 117 MWh of PV electricity was generated within a year across 74 dwellings, peak generation did not match peak consumption, demonstrating the need for battery storage. Home batteries were found to increase self-consumption of PV electricity and offset grid demand through discharge of stored PV electricity marginally at an average of 6%, depending on the size of the PV system, surplus PV electricity available and size of the battery. Aggregating solar generation and storage at a community level showed that peak grid electricity demand between 17:00 and 19:00 was reduced by 8% through the use of smart batteries across 74 dwellings. In future, a local energy sharing scheme could be developed, wherein not all dwellings would need to have solar PV systems, but rather have internet enabled batteries that could be monitored and controlled virtually

    A Numbers Game:Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death

    Get PDF
    We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn) operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE), is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures

    Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    Get PDF
    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data

    Precipitation on Venus: Properties and Possibilities of Detection

    Get PDF
    Mariner 10 occultation measurements have provided evidence of a dense cloud deck in the lower atmosphere of Venus with a peak liquid content of about 1 g m^−3. This, in conjunction with other measurements-such as turbulence, updrafts and the presence of aerosol—seem to favor the possibility of precipitation on Venus. Modeling of droplet growth in the Venusian environment shows that precipitation size drops can be formed over periods of only a few hours, similar to growth rates on Earth. The precipitation region, if it exists, would extend from the cloud base at about 50 km to the 38 km level where most of the droplets will have evaporated. Precipitation regions can be detected with a variety of remote sensing radar and radio techniques
    corecore