752 research outputs found
Money and Goldstone modes
Why is ``worthless'' fiat money generally accepted as payment for goods and
services? In equilibrium theory, the value of money is generally not
determined: the number of equations is one less than the number of unknowns, so
only relative prices are determined. In the language of mathematics, the
equations are ``homogeneous of order one''. Using the language of physics, this
represents a continuous ``Goldstone'' symmetry. However, the continuous
symmetry is often broken by the dynamics of the system, thus fixing the value
of the otherwise undetermined variable. In economics, the value of money is a
strategic variable which each agent must determine at each transaction by
estimating the effect of future interactions with other agents. This idea is
illustrated by a simple network model of monopolistic vendors and buyers, with
bounded rationality. We submit that dynamical, spontaneous symmetry breaking is
the fundamental principle for fixing the value of money. Perhaps the continuous
symmetry representing the lack of restoring force is also the fundamental
reason for large fluctuations in stock markets.Comment: 7 pages, 3 figure
Virial expansion coefficients in the harmonic approximation
The virial expansion method is applied within a harmonic approximation to an
interacting N-body system of identical fermions. We compute the canonical
partition functions for two and three particles to get the two lowest orders in
the expansion. The energy spectrum is carefully interpolated to reproduce
ground state properties at low temperature and the non-interacting large
temperature limit of constant virial coefficients. This resembles the smearing
of shell effects in finite systems with increasing temperature. Numerical
results are discussed for the second and third virial coefficients as function
of dimension, temperature, interaction, and the transition temperature between
low and high energy limits.Comment: 11 pages, 7 figures, published versio
Polarisation vision: overcoming challenges of working with a property of light we barely see.
In recent years, the study of polarisation vision in animals has seen numerous breakthroughs, not just in terms of what is known about the function of this sensory ability, but also in the experimental methods by which polarisation can be controlled, presented and measured. Once thought to be limited to only a few animal species, polarisation sensitivity is now known to be widespread across many taxonomic groups, and advances in experimental techniques are, in part, responsible for these discoveries. Nevertheless, its study remains challenging, perhaps because of our own poor sensitivity to the polarisation of light, but equally as a result of the slow spread of new practices and methodological innovations within the field. In this review, we introduce the most important steps in designing and calibrating polarised stimuli, within the broader context of areas of current research and the applications of new techniques to key questions. Our aim is to provide a constructive guide to help researchers, particularly those with no background in the physics of polarisation, to design robust experiments that are free from confounding factors
Core Formation, Coherence and Collapse: A New Core Evolution Paradigm Revealed by Machine Learning
We study the formation, evolution and collapse of dense cores by tracking
density structures in a magnetohydrodynamic (MHD) simulation. We identify cores
using the dendrogram algorithm and utilize machine learning techniques,
including principal component analysis (PCA) and the k-means clustering
algorithm to analyze the full density and velocity dispersion profiles of these
cores. We find that there exists an evolutionary sequence consisting of three
distinct phases: i) the formation of turbulent density structures (Phase I),
ii) the dissipation of turbulence and the formation of coherent cores (Phase
II), and iii) the transition to protostellar cores through gravitational
collapse (Phase III). In dynamically evolving molecular clouds, the existence
of these three phases corresponds to the coexistence of three populations of
cores with distinct physical properties. The prestellar and protostellar cores
frequently analyzed in previous studies of observations and simulations belong
to the last phase in this evolutionary picture. We derive typical lifetimes of
1.41.010 yr, 3.31.410 yr and
3.31.410 yr, respectively for Phase I, II and III. We find
that cores can form from both converging flows and filament fragmentation and
that cores may form both inside and outside the filaments. We then compare our
results to previous observations of coherent cores and provide suggestions for
future observations to study cores belonging to the three phases.Comment: Submitted to Astrophysical Journal in June, 202
Simulation of a Machine Learning Based Controller for a Fixed-Wing UAV with Distributed Sensors
Recent research suggests that the information obtained from arrays of sensors distributed on the wing of a fixed-wing small unmanned aerial vehicle (UAV) can provide information not available to conventional sensor suites. These arrays of sensors are capable of sensing the flow around the aircraft and it has been indicated that they could be a potential tool to improve flight control and overall flight performance. However, more work needs to be carried out to fully exploit the potential of these sensors for flight control. This work presents a 3 degrees-of-freedom longitudinal flight dynamics and control simulation model of a small fixed-wing UAV. Experimental readings of an array of pressure and strain sensors distributed across the wing were integrated in the model. This study investigated the feasibility of using machine learning to control airspeed of the UAV using the readings from the sensing array, and looked into the sensor layout and its effect on the performance of the controller. It was found that an artificial neural network was able to learn to mimic a conventional airspeed controller using only distributed sensor signals, but showed better performance for controlling changes in airspeed for a constant altitude than holding airspeed during changes in altitude. The neural network could control airspeed using either pressure or strain sensor information, but having both improved robustness to increased levels of turbulence. Results showed that some strain sensors and many pressure sensors signals were not necessary to achieve good controller performance, but that the pressure sensors near the leading edge of the wing were required. Future work will focus on replacing other elements of the flight control system with machine learning elements and investigate the use of reinforcement learning in place of supervised learning.</p
Titania-doped tantala/silica coatings for gravitational-wave detection
Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors
The Green Bank Ammonia Survey (GAS): First Results of NH3 mapping the Gould Belt
We present an overview of the first data release (DR1) and first-look science
from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green
Bank Telescope to map all Gould Belt star-forming regions with
mag visible from the northern hemisphere in emission from NH and other key
molecular tracers. This first release includes the data for four regions in
Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and
Orion A North in Orion. We compare the NH emission to dust continuum
emission from Herschel, and find that the two tracers correspond closely.
NH is present in over 60\% of lines-of-sight with mag in
three of the four DR1 regions, in agreement with expectations from previous
observations. The sole exception is B18, where NH is detected toward ~ 40\%
of lines-of-sight with mag. Moreover, we find that the NH
emission is generally extended beyond the typical 0.1 pc length scales of dense
cores. We produce maps of the gas kinematics, temperature, and NH column
densities through forward modeling of the hyperfine structure of the NH
(1,1) and (2,2) lines. We show that the NH velocity dispersion,
, and gas kinetic temperature, , vary systematically between
the regions included in this release, with an increase in both the mean value
and spread of and with increasing star formation activity.
The data presented in this paper are publicly available.Comment: 33 pages, 27 figures, accepted to ApJS. Datasets are publicly
available: https://dataverse.harvard.edu/dataverse/GAS_DR
Droplets I: Pressure-Dominated Sub-0.1 pc Coherent Structures in L1688 and B18
We present the observation and analysis of newly discovered coherent
structures in the L1688 region of Ophiuchus and the B18 region of Taurus. Using
data from the Green Bank Ammonia Survey (GAS), we identify regions of high
density and near-constant, almost-thermal, velocity dispersion. Eighteen
coherent structures are revealed, twelve in L1688 and six in B18, each of which
shows a sharp "transition to coherence" in velocity dispersion around its
periphery. The identification of these structures provides a chance to study
the coherent structures in molecular clouds statistically. The identified
coherent structures have a typical radius of 0.04 pc and a typical mass of 0.4
Msun, generally smaller than previously known coherent cores identified by
Goodman et al. (1998), Caselli et al. (2002), and Pineda et al. (2010). We call
these structures "droplets." We find that unlike previously known coherent
cores, these structures are not virially bound by self-gravity and are instead
predominantly confined by ambient pressure. The droplets have density profiles
shallower than a critical Bonnor-Ebert sphere, and they have a velocity (VLSR)
distribution consistent with the dense gas motions traced by NH3 emission.
These results point to a potential formation mechanism through pressure
compression and turbulent processes in the dense gas. We present a comparison
with a magnetohydrodynamic simulation of a star-forming region, and we
speculate on the relationship of droplets with larger, gravitationally bound
coherent cores, as well as on the role that droplets and other coherent
structures play in the star formation process.Comment: Accepted by ApJ in April, 201
Women After War: Weaving Nostos in Homeric Epic and in the Twenty-First Century
While women play a circumscribed role in ancient epic, Homer\u27s Odyssey depicts both Helen and Penelope as undergoing their own forms of homecoming, or nostos, after the Trojan War: Helen returns to her husband Menelaus after experiencing the war firsthand at Troy and a ten-year separation; Penelope stays home, but Odysseus\u27 return is in many ways as much a challenge for her as it is for him and the Odyssey portrays her domestic ordeal as a form of heroic nostos. In this essay, I explore female ways of homecoming in the Odyssey and draw connections between Homeric heroines and members of Team Lioness returning home from Afghanistan and Iraq in the twenty-first century. The 2008 documentary Lioness gives voice to some of these women, the country\u27s first generation of female combat veterans, as they struggle to reconcile their experience of war in Iraq with their lives at home. While the ancient Greeks could not have conceived of women experiencing battle in the way the members of Team Lioness did, Helen\u27s and Penelope\u27s marginalized roles in the Odyssey open a window into the contemporary experience of women soldiers and veterans and provide ways of understanding the challenges of the trauma of war and female homecoming in the twenty-first century
- …