43 research outputs found

    Targeting surface nucleolin with multivalent HB-19 and related Nucant pseudopeptides results in distinct inhibitory mechanisms depending on the malignant tumor cell type

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleolin expressed at the cell surface is a binding protein for a variety of ligands implicated in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal RGG domain of nucleolin, the HB-19 pseudopeptide, we recently reported that targeting surface nucleolin with HB-19 suppresses progression of established human breast tumor cells in the athymic nude mice, and delays development of spontaneous melanoma in the RET transgenic mice.</p> <p>Methods</p> <p>By the capacity of HB-19 to bind stably surface nucleolin, we purified and identified nucleolin partners at the cell surface. HB-19 and related multivalent Nucant pseudopeptides, that present pentavalently or hexavalently the tripeptide Lysψ(CH<sub>2</sub>N)-Pro-Arg, were then used to show that targeting surface nucleolin results in distinct inhibitory mechanisms on breast, prostate, colon carcinoma and leukemia cells.</p> <p>Results</p> <p>Surface nucleolin exists in a 500-kDa protein complex including several other proteins, which we identified by microsequencing as two Wnt related proteins, Ku86 autoantigen, signal recognition particle subunits SRP68/72, the receptor for complement component gC1q-R, and ribosomal proteins S4/S6. Interestingly, some of the surface-nucleolin associated proteins are implicated in cell signaling, tumor cell adhesion, migration, invasion, cell death, autoimmunity, and bacterial infections. Surface nucleolin in the 500-kDa complex is highly stable. Surface nucleolin antagonists, HB-19 and related multivalent Nucant pseudopeptides, exert distinct inhibitory mechanisms depending on the malignant tumor cell type. For example, in epithelial tumor cells they inhibit cell adhesion or spreading and induce reversion of the malignant phenotype (BMC cancer 2010, <b>10</b>:325) while in leukemia cells they trigger a rapid cell death associated with DNA fragmentation. The fact that these pseudopeptides do not cause cell death in epithelial tumor cells indicates that cell death in leukemia cells is triggered by a specific signaling mechanism, rather than nonspecific cellular injury.</p> <p>Conclusions</p> <p>Our results suggest that targeting surface nucleolin could change the organization of the 500-kDa complex to interfere with the proper functioning of surface nucleolin and the associated proteins, and thus lead to distinct inhibitory mechanisms. Consequently, HB-19 and related Nucant pseudopeptides provide novel therapeutic opportunities in treatment of a wide variety of cancers and related malignancies.</p

    A novel receptor – ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Francisella tularensis</it>, the causative agent of tularemia, is one of the most infectious human bacterial pathogens. It is phagocytosed by immune cells, such as monocytes and macrophages. The precise mechanisms that initiate bacterial uptake have not yet been elucidated. Participation of C3, CR3, class A scavenger receptors and mannose receptor in bacterial uptake have been already reported. However, contribution of an additional, as-yet-unidentified receptor for <it>F. tularensis </it>internalization has been suggested.</p> <p>Results</p> <p>We show here that cell-surface expressed nucleolin is a receptor for <it>Francisella tularensis </it>Live Vaccine Strain (LVS) and promotes LVS binding and infection of human monocyte-like THP-1 cells. The HB-19 pseudopeptide that binds specifically carboxy-terminal RGG domain of nucleolin inhibits LVS binding and infection of monocyte-like THP-1 cells. In a pull-down assay, elongation factor Tu (EF-Tu), a GTP-binding protein involved in protein translation, usually found in cytoplasm, was recovered among LVS bacterial membrane proteins bound on RGG domain of nucleolin. A specific polyclonal murine antibody was raised against recombinant LVS EF-Tu. By fluorescence and electron microscopy experiments, we found that a fraction of EF-Tu could be detected at the bacterial surface. Anti-EF-Tu antibodies reduced LVS binding to monocyte-like THP-1 cells and impaired infection, even in absence of complement and complement receptors. Interaction between EF-Tu and nucleolin was illustrated by two different pull-down assays using recombinant EF-Tu proteins and either RGG domain of nucleolin or cell solubilized nucleolin.</p> <p>Discussion</p> <p>Altogether, our results demonstrate that the interaction between surface nucleolin and its bacterial ligand EF-Tu plays an important role in <it>Francisella tularensis </it>adhesion and entry process and may therefore facilitate invasion of host tissues. Since phagosomal escape and intra-cytosolic multiplication of LVS in infected monocytes are very similar to those of human pathogenic <it>F. tularensis </it>ssp <it>tularensis</it>, the mechanism of entry into monocyte-like THP-1 cells, involving interaction between EF-Tu and nucleolin, might be similar in the two subspecies. Thus, the use of either nucleolin-specific pseudopeptide HB-19 or recombinant EF-Tu could provide attractive therapeutic approaches for modulating <it>F. tularensis </it>infection.</p

    Surface Expressed Nucleolin Is Constantly Induced in Tumor Cells to Mediate Calcium-Dependent Ligand Internalization

    Get PDF
    BACKGROUND: Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in tumorigenesis and angiogenesis. Emerging evidence suggests that the cell-surface expressed nucleolin is a strategic target for an effective and nontoxic cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: By monitoring the expression of nucleolin mRNA, and by measuring the level of nucleolin protein recovered from the surface and nucleus of cells, here we show that the presence of nucleolin at the cell surface is dependent on the constant induction of nucleolin mRNA. Indeed, inhibitors of RNA transcription or translation block expression of surface nucleolin while no apparent effect is observed on the level of nucleolin in the nucleus. The estimated half-life of surface nucleolin is less than one hour, whereas that of nuclear nucleolin is more than 8 hours. Nucleolin mRNA induction is reduced markedly in normal fibroblasts that reach confluence, while it occurs continuously even in post-confluent epithelial tumor cells consistent with their capacity to proliferate without contact inhibition. Interestingly, cold and heat shock induce nucleolin mRNA concomitantly to enhanced mRNA expression of the heat shock protein 70, thus suggesting that surface nucleolin induction also occurs in response to an environmental insult. At the cell surface, one of the main functions of nucleolin is to shuttle specific extracellular ligands by an active transport mechanism, which we show here to be calcium dependent. CONCLUSION/SIGNIFICANCE: Our results demonstrate that the expression of surface nucleolin is an early metabolic event coupled with tumor cell proliferation and stress response. The fact that surface nucleolin is constantly and abundantly expressed on the surface of tumor cells, makes them a preferential target for the inhibitory action of anticancer agents that target surface nucleolin

    Suppression of Tumor Growth and Angiogenesis by a Specific Antagonist of the Cell-Surface Expressed Nucleolin

    Get PDF
    BACKGROUND: Emerging evidences suggest that nucleolin expressed on the cell surface is implicated in growth of tumor cells and angiogenesis. Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, here we show that the growth of tumor cells and angiogenesis are suppressed in various in vitro and in vivo experimental models. HB-19 inhibited colony formation in soft agar of tumor cell lines, impaired migration of endothelial cells and formation of capillary-like structures in collagen gel, and reduced blood vessel branching in the chick embryo chorioallantoic membrane. In athymic nude mice, HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in nude mice, and in some cases eliminated measurable tumors while displaying no toxicity to normal tissue. This potent antitumoral effect is attributed to the direct inhibitory action of HB-19 on both tumor and endothelial cells by blocking and down regulating surface nucleolin, but without any apparent effect on nucleolar nucleolin. CONCLUSION/SIGNIFICANCE: Our results illustrate the dual inhibitory action of HB-19 on the tumor development and the neovascularization process, thus validating the cell-surface expressed nucleolin as a strategic target for an effective cancer drug. Consequently, the HB-19 pseudopeptide provides a unique candidate to consider for innovative cancer therapy

    Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of cell-surface nucleolin in cancer biology was recently highlighted by studies showing that ligands of nucleolin play critical role in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, we recently reported that HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in the athymic nude mice without apparent toxicity.</p> <p>Methods</p> <p>The <it>in vivo </it>antitumoral action of HB-19 treatment was assessed on the spontaneous development of melanoma in the RET transgenic mouse model. Ten days old RET mice were treated with HB-19 in a prophylactic setting that extended 300 days. In parallel, the molecular basis for the action of HB-19 was investigated on a melanoma cell line (called TIII) derived from a cutaneous nodule of a RET mouse.</p> <p>Results</p> <p>HB-19 treatment of RET mice caused a significant delay in the onset of cutaneous tumors, several-months delay in the incidence of large tumors, a lower frequency of cutaneous nodules, and a reduction of visceral metastatic nodules while displaying no toxicity to normal tissue. Moreover, microvessel density was significantly reduced in tumors recovered from HB-19 treated mice compared to corresponding controls. Studies on the melanoma-derived tumor cells demonstrated that HB-19 treatment of TIII cells could restore contact inhibition, impair anchorage-independent growth, and reduce their tumorigenic potential in mice. Moreover, HB-19 treatment caused selective down regulation of transcripts coding matrix metalloproteinase 2 and 9, and tumor necrosis factor-α in the TIII cells and in melanoma tumors of RET mice.</p> <p>Conclusions</p> <p>Although HB-19 treatment failed to prevent the development of spontaneous melanoma in the RET mice, it delayed for several months the onset and frequency of cutaneous tumors, and exerted a significant inhibitory effect on visceral metastasis. Consequently, HB-19 could provide a novel therapeutic agent by itself or as an adjuvant therapy in association with current therapeutic interventions on a virulent cancer like melanoma.</p

    The caveolin-1 binding domain of HIV-1 glycoprotein gp41 (CBD1) contains several overlapping neutralizing epitopes.

    No full text
    International audienceThe CBD1 peptide (SLEQIWNNMTWMQWDK), corresponding to the consensus caveolin-1 binding domain in HIV-1 envelope glycoprotein gp41 (CBD1), elicits the production of antibodies that inhibit infection of primary CD4(+) T lymphocytes by various primary HIV-1 isolates. Here we show that HIV-neutralizing antibodies against CBD1 react with multiple conformational epitopes that overlap the highly conserved caveolin-1 binding motif (CBM) with the N-terminal conserved isoleucine residue. The CBM-based peptides IWNNMTWMQW and IWNNMTW when fused to a T helper epitope are immunogenic by inducing high titer CBM-specific antibodies capable of neutralizing HIV-1 infection in primary T lymphocyte cultures. Interestingly, neutralizing immune sera raised against a given peptide do not cross-react with related CBM-derived peptides, thus suggesting the existence of distinct neutralizing epitopes that probably reflect the dynamic conformational features of CBD1. In accord with this, the mixture of neutralizing immune sera raised against several CBM-derived peptides exerts a synergistic neutralizing activity against HIV-1 infection. Finally, the existence of several distinct overlapping epitopes in CBD1 is confirmed by murine monoclonal antibodies that we generated against the CBM-derived chimeric peptides. Our results indicate that CBD1- and CBM-based peptides mimic distinct dynamic conformations of CBD1, and thus such peptides could provide specific immunogens for an efficient vaccine preparation against HIV/AIDS infection

    The CBD1 peptide corresponding to the caveolin-1 binding domain of HIV-1 glycoprotein gp41 elicits neutralizing antibodies in cynomolgus macaques when administered with the tetanus T helper epitope.

    No full text
    International audienceCBD1 peptide (SLEQIWNNMTWMQWDK), corresponding to the consensus caveolin-1 binding domain in HIV-1 envelope glycoprotein gp41, elicits the production of antibodies that inhibit infection of primary CD4(+) T lymphocytes by various primary HIV-1 isolates. Here the immunogenicity of the CBD1 peptide was investigated in cynomolgus macaques using adjuvants that are acceptable for human use. In the first set of studies, macaques were immunized with the CBD1 peptide in association with muramyl dipeptide derivative MDP-Lys(L18) combined with the oil-in-water emulsion, MF-59. After five immunizations at 4 weeks interval, the antibody titer against the CBD1 peptide was found to be either medium, poor, weak or none, thus suggesting that the CBD1 immune response might be restricted by the major histocompatibility complex (MHC) class II molecules. In the second set of studies therefore, macaques were immunized with the CBD1 peptide in association with the 'promiscuous' T cell epitope from the tetanus toxin, either as free peptides or covalently linked with the dilysine linker using CpG ODN and Montanide ISA 51 as adjuvants. This latter immunization procedure boosted markedly the anti-CBD1 antibody response, since even the non-responders generated high-titered peptide-specific antibodies. Moreover, co-immunization of the CBD1 and the T helper epitope as free peptides seemed to be favorable for the production of neutralizing antibodies, with 50% inhibition of HIV-1 infection occurring at 300-400-fold dilution of the immune sera. Finally, neutralizing and non-neutralizing immune macaque sera could be differentiated by the profile of cross-reactivity with overlapping CBD1-related peptides in ELISA. Taken together, our results demonstrate that the CBD1 peptide is immunogenic in macaques and that an eventual MHC-restriction could be overcome by the administration with an appropriate T helper epitope
    corecore