12 research outputs found

    Development of a high-resolution NGS-based HLA-typing and analysis pipeline

    Get PDF
    The human leukocyte antigen (HLA) complex contains the most polymorphic genes in the human genome. The classical HLA class I and II genes define the specificity of adaptive immune responses. Genetic variation at the HLA genes is associated with susceptibility to autoimmune and infectious diseases and plays a major role in transplantation medicine and immunology. Currently, the HLA genes are characterized using Sanger- or next-generation sequencing (NGS) of a limited amplicon repertoire or labeled oligonucleotides for allele-specific sequences. High-quality NGS-based methods are in proprietary use and not publicly available. Here, we introduce the first highly automated open-kit/open-source HLA-typing method for NGS. The method employs in-solution targeted capturing of the classical class I (HLA-A, HLA-B, HLA-C) and class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). The calling algorithm allows for highly confident allele-calling to three-field resolution (cDNA nucleotide variants). The method was validated on 357 commercially available DNA samples with known HLA alleles obtained by classical typing. Our results showed on average an accurate allele call rate of 0.99 in a fully automated manner, identifying also errors in the reference data. Finally, our method provides the flexibility to add further enrichment target regions

    Genetic associations in Italian primary sclerosing cholangitis : heterogeneity across Europe defines a critical role for HLA-C

    No full text
    BACKGROUND & AIMS: The HLA complex on chromosome 6p21 is firmly established as a risk locus for primary sclerosing cholangitis (PSC). We aimed to exploit genetic differences between Northern Europe and Italy in an attempt to define a causative locus in this genetic region. METHODS: Seventy-eight North-Italian PSC patients and 79 controls were included. We performed sequencing-based genotyping of HLA-C, HLA-B, and HLA-DRB1. The major histocompatibility chain-related A (MICA) transmembrane microsatellite was analysed using PCR fragment length determination. The tumour necrosis factor-alpha (TNF-alpha)-308G-->A polymorphism was genotyped with TaqMan. Allele frequencies were compared with Chi-square tests. Uncorrected p-values <0.05 were considered statistically significant when replicating findings in previous studies. The p-values of novel associations were corrected for multiple comparisons (Bonferroni). RESULTS: The frequency of the strong inhibitory HLA-C2 killer-immunoglobulin receptor (KIR) ligand variant was significantly reduced in PSC vs. controls (0.39 vs. 0.58, p=0.0006). Consequently, HLA-C1 homozygosity was associated with an increased risk of PSC (OR 3.1; 95% CI 1.4-6.7, p=0.004). Importantly, there were no significant associations with the HLA-Bw4 KIR ligand variant, at the neighbouring MICA locus or with TNF-alpha-308G-->A. At HLA-DRB1, we confirmed positive and negative associations with DRB1*15 and DRB1*07, respectively, while there were no associations with the DRB1*03, *04 or *1301 alleles typically detected in PSC in Northern Europe. CONCLUSIONS: The strong inhibitory of the KIR ligand HLA-C2 protects against PSC development in all populations hitherto studied. Further studies on the role of natural killer cells and T-lymphocytes expressing KIRs in PSC pathogenesis are warranted

    Elevated interleukin-8 in bile of patients with primary sclerosing cholangitis

    No full text
    To better understand the pathogenesis of primary sclerosing cholangitis, anti- and pro-inflammatory factors were studied in bile. Ductal bile of PSC patients (n = 36) and controls (n = 20) was collected by endoscopic retrograde cholangiography. Gallbladder bile was collected at liver transplantation. Bile samples were analysed for cytokines, FGF19 and biliary lipids. Hepatobiliary tissues of PSC and non-PSC patients (n = 8-11 per patient group) were collected at transplantation and were analysed for IL8 and FGF19 mRNA expression and IL8 localization. The effect of IL8 on proliferation of primary human cholangiocytes and expression of pro-fibrotic genes was studied. In PSC patients, median IL8 in ductal bile was 6.6 ng/ml vs. 0.24 ng/ml in controls. Median IL8 in gallbladder bile was 7.6 ng/ml in PSC vs. 2.2 and 0.3 ng/ml in two control groups. IL8 mRNA in PSC gallbladder was increased and bile ducts stained positive for IL8. In vitro, IL8 induced proliferation of primary human cholangiocytes and increased the expression of pro-fibrotic genes. Elevation of IL8 in bile of PSC patients, collected at different stages of disease, indicates an ongoing inflammatory stimulus that drives IL8 production. This challenges the idea that advanced PSC is a burned-out disease, and calls for reconsideration of anti-inflammatory therapy in PS

    Serum metabolomic profiling highlights pathways associated with liver fat content in a general population sample.

    No full text
    BACKGROUND/OBJECTIVES: Fatty liver disease (FLD) is an important intermediate trait along the cardiometabolic disease spectrum and strongly associates with type 2 diabetes. Knowledge of biological pathways implicated in FLD is limited. An untargeted metabolomic approach might unravel novel pathways related to FLD. SUBJECTS/METHODS: In a population-based sample (n=555) from Northern Germany, liver fat content was quantified as liver signal intensity using magnetic resonance imaging. Serum metabolites were determined using a non-targeted approach. Partial least squares regression was applied to derive a metabolomic score, explaining variation in serum metabolites and liver signal intensity. Associations of the metabolomic score with liver signal intensity and FLD were investigated in multivariable-adjusted robust linear and logistic regression models, respectively. Metabolites with a variable importance in the projection &gt;1 were entered in in silico overrepresentation and pathway analyses. RESULTS: In univariate analysis, the metabolomics score explained 23.9% variation in liver signal intensity. A 1-unit increment in the metabolomic score was positively associated with FLD (n=219; odds ratio: 1.36; 95% confidence interval: 1.27-1.45) adjusting for age, sex, education, smoking and physical activity. A simplified score based on the 15 metabolites with highest variable importance in the projection statistic showed similar associations. Overrepresentation and pathway analyses highlighted branched-chain amino acids and derived gamma-glutamyl dipeptides as significant correlates of FLD. CONCLUSIONS: A serum metabolomic profile was associated with FLD and liver fat content. We identified a simplified metabolomics score, which should be evaluated in prospective studies.European Journal of Clinical Nutrition advance online publication, 5 April 2017; doi:10.1038/ejcn.2017.43

    Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci.

    No full text
    Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4-7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and 2,174 controls. We detected non-HLA associations at rs3197999 in MST1 and rs6720394 near BCL2L11 (combined P = 1.1 &times; 10⁻&sup1;⁶ and P = 4.1 &times; 10⁻⁸, respectively)

    Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis

    No full text
    Objective Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. Design We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients - obtained using the Illumina immunochip - with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. Results We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10 -9). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. Conclusion We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018
    corecore