88 research outputs found

    Fabrication of piezodriven, free-standing, all-oxide heteroepitaxial cantilevers on silicon

    Get PDF
    We report on the fabrication and mechanical properties of all-oxide, free-standing, heteroepitaxial, piezoelectric, microelectromechanical systems (MEMS) on silicon, using PbZr0.52Ti0.48O3 as the key functional material. The fabrication was enabled by the development of an epitaxial lift-off strategy for the patterning of multilayer oxide heterostructures grown on Si(001), employing a high temperature stable, sacrificial oxide template mask to obtain freestanding cantilever MEMS devices after substrate etching. All cantilevers, with lengths in the range 25–325 μm, width 50 μm, and total thickness of 300 nm, can be actuated by an external AC-bias. For lengths 50–125 μm, the second order bending mode formed the dominant resonance, whereas for the other lengths different or multiple modes were presen

    Magnetization reversal mechanism in La0.67Sr0.33MnO3 thin films on NdGaO3 substrates

    Get PDF
    The field angle dependence of the coercive field of La0.67Sr0.33MnO3 thin films grown epitaxially on NdGaO3 substrates with different crystallographic orientations was determined. All films show uniaxial anisotropy. The angle dependence of the coercivity is best described by a two-phase model, explaining the strong increase in the coercive field for increasing field angles, away from the easy axis direction, as well as the sharp decrease for angles close to the hard direction. This implies that magnetization reversal starts with the depinning of domain walls, analogous to the Kondorsky model. With increasing field the reversal in the domains is not abrupt, but is determined by the gradual displacement of the domain walls. These results are of significance for understanding and possibly engineering of the switching behavior of magnetic tunnel junctions

    Research update: Enhancement of figure of merit for energy-harvesters based on free-standing epitaxial Pb(Zr0.52Ti0.48)0.99Nb0.01O3 thin-film cantilevers

    Get PDF
    All-oxide free-standing cantilevers were fabricated with epitaxial (001)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) and Pb(Zr0.52Ti0.48)0.99Nb0.01O3 (PNZT) as piezoelectric layers and SrRuO3 electrodes. The ferroelectric and piezoelectric hysteresis loops were measured. From the zero-bias values, the figure-of-merits (FOMs) for piezoelectric energy harvesting systems were calculated. For the PNZT cantilever, an extremely large value FOM = 55 GPa was obtained. This very high value is due to the large shifts of the hysteresis loops such that the zero-bias piezoelectric coefficient e31f is maximum and the zero-bias dielectric constant is strongly reduced compared to the value in the undoped PZT device. The results show that by engineering the self-bias field the energy-harvesting properties of piezoelectric systems can be increased significantly

    Out-of-plane magnetic domain structure in a thin film of La0.67Sr0.33MnO3 on SrTiO3 (001) observed by magnetic force microscopy

    Get PDF
    The room temperature out-of-plane magnetization of epitaxial thin films of La0.67Sr0.33MnO3 on SrTiO3 (001) has been investigated with magnetic force microscopy, using magnetic tips with very small coercivity, relative to the film. A clear magnetic pattern in the form of a checkerboard, with domain dimensions of a few hundred nanometers, was found for the thin, coherently strained films, which is approximately aligned along the maximum strain [110] and [1[overline 1]0] directions in the film. With increasing in-plane applied magnetic field, the magnetic contrast reduces, reflecting the rotation of the magnetization vector into the plane of the film. This process is reversible with the field. The out-of-plane magnetic pattern is not sensitive to rotation of the in-plane field. We attribute the observed out-of-plane magnetization component to an out-of-plane magnetic anisotropy, which is a remainder of the [111] magnetic easy axis in bulk La0.67Sr0.33MnO3 single crystal

    Anisotropic stress relief mechanism in epitaxial La0.67Sr0.33MnO3 films

    Get PDF
    We report an anisotropic misfit stress relief mechanism in thin La0.67Sr0.33MnO3 (LSMO) films coherently grown on NdGaO3(110) substrates. These results are uniquely related to the orthorhombicity of the LSMO. The x-ray diffraction measurements and quantitative simulations demonstrate that biaxial mismatch stress is relieved differently along in-plane directions perpendicular to each other: in the [1math0] direction stress is accommodated by decrease of the γ angle of the orthorhombic LSMO unit cell, while in the [001] direction stress is partially relieved by periodic lattice modulations

    Rotation of the magnetic easy axis in La0.67Sr0.33MnO3 thin film on NdGaO3(112)

    Get PDF
    The in-plane magnetic anisotropy is studied for pseudocubic {011}pc oriented La0.67Sr0.33MnO3 (LSMO) thin film grown on orthorhombic NdGaO3(NGO)(112)o (the subindices “pc” and “o” indicate the pseudocubic and orthorhombic lattice structure, respectively). The direction of the in-plane remanent magnetization of LSMO thin films with different thicknesses is determined. With increasing film thickness the easy axes rotate and the anisotropy changes from uniaxial to biaxial. This is associated with the increasing symmetry of the LSMO with increasing thickness, starting with a monoclinic LSMO structure at the nonrectangular NGO(112)o surface unit cell of the substrate, developing into an orthorhombic structure at the top part of the thickest films

    High energy storage responses in all-oxide epitaxial relaxor ferroelectric thin films with the coexistence of relaxor and antiferroelectric-like behaviors

    Get PDF
    Relaxor ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin films have been epitaxially grown via pulsed laser deposition on SrRuO3/SrTiO3 single crystal with different orientations. The high recoverable energy-storage density and energy-storage efficiency in the epitaxial PLZT thin films are mainly caused by the coexistence of relaxor and antiferroelectric-like behaviors. The recoverable energy-storage density of 12.03, 12.51 and 12.74 J/cm3 and energy-storage efficiency of 86.50, 88.14 and 88.44%, respectively, for the PLZT(001), PLZT(011) and PLZT(111) thin films measured at 1000 kV/cm. The high energy density and high efficiency indicate that the relaxor epitaxial PLZT(111) thin film is a promising candidate for high pulsed power capacitors

    Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films \ud

    Get PDF
    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vecto

    Proximity effect Nb/Al,AlOxide, Al/Nb Josephson tunnel junctions

    Get PDF
    Regions with reduced energy gap induced by the proximity effect give rise to quasi-particle loss in Josephson-junction X-ray detectors, but may also be used advantageously for quasi-particle collection. The influence of the thickness of the Al proximity layers in Nb/Al1 , AlOx, Al2/Nb Josephson tunnel junctions on the electrical characteristics has been investigated theoretically and experimentally. Theoretically it is found that the strength of the proximity effect is mainly determined by the proximity effect is mainly determined by the proximity parameters γM1 (γM2) of the electrodes. Good fits of the measured I-V curves with theory were obtained for junctions with thicknesses dA11 ranging from 4 to 25 nm and dA12=3 nm, with γM2≈0.12 and γM1/γM2=dA11/d A12. For all junctions the proximity knee remains more pronounced than predicted
    corecore