30 research outputs found

    CAD-Based Design Optimization of Four-Bar Mechanisms: An Emergency Ventilator Case Study

    Get PDF
    The design optimization of mechanisms is promising as it results in more energy-efficient machines without compromising performance. However, machine builders do not apply state-of-the-art methods, as these algorithms require case-specific theoretical analysis. Moreover, the design synthesis approaches in the literature predominantly utilize heuristic optimizers, leading to suboptimal local minima. This paper introduces a widely applicable workflow, guaranteeing the global optimum. The constraints describing the feasible region of the possible designs are essential to find the global optimum. Therefore, kinematic analysis of the point-to-point planar four-bar mechanism is discussed. Within the feasible design space, objective value samples were generated through the CAD multi-body software. These motion simulations determine the required torque to fulfill the movement for a combination of design parameters. This replaces the cumbersome analytic derivation of the torque. This paper introduces sparse interpolation techniques to avoid brute force sampling of the design space. The advantage of this approach is that it is easily scalable to more design parameters, as the interpolation method minimizes the number of necessary samples. This paper explains the mathematical background of our developed interpolation approach. However, a step-by-step procedure is introduced to allow the employment of the interpolation technique by machine designers without the necessity to understand the underlying mathematics. Finally, the mathematical expression, obtained from the interpolation, enables applying global optimizers. In a case study of an emergency ventilator mechanism with three design parameters, 1870 CAD motion simulations allowed reducing the RMS torque of the mechanism by 67

    CAD-Based Design Optimization of Four-Bar Mechanisms: An Emergency Ventilator Case Study

    Get PDF
    The design optimization of mechanisms is promising as it results in more energy-efficient machines without compromising performance. However, machine builders do not apply state-of-the-art methods, as these algorithms require case-specific theoretical analysis. Moreover, the design synthesis approaches in the literature predominantly utilize heuristic optimizers, leading to suboptimal local minima. This paper introduces a widely applicable workflow, guaranteeing the global optimum. The constraints describing the feasible region of the possible designs are essential to find the global optimum. Therefore, kinematic analysis of the point-to-point planar four-bar mechanism is discussed. Within the feasible design space, objective value samples were generated through the CAD multi-body software. These motion simulations determine the required torque to fulfill the movement for a combination of design parameters. This replaces the cumbersome analytic derivation of the torque. This paper introduces sparse interpolation techniques to avoid brute force sampling of the design space. The advantage of this approach is that it is easily scalable to more design parameters, as the interpolation method minimizes the number of necessary samples. This paper explains the mathematical background of our developed interpolation approach. However, a step-by-step procedure is introduced to allow the employment of the interpolation technique by machine designers without the necessity to understand the underlying mathematics. Finally, the mathematical expression, obtained from the interpolation, enables applying global optimizers. In a case study of an emergency ventilator mechanism with three design parameters, 1870 CAD motion simulations allowed reducing the RMS torque of the mechanism by 67

    Heterogeneous Distribution of Microbial Activity in Methanogenic Aggregates: pH and Glucose Microprofiles

    Get PDF
    Methanogenic aggregates, harvested from an upflow anaerobic sludge blanket reactor treating potato starch wastewater, were acclimatized to either glucose or a mixture of sugars and organic nitrogen compounds (i.e., diluted molasses). Both types of granules exhibited internal pH and substrate concentration gradients in mineral medium (pH 7.0, 30°C) as was measured with microelectrodes. Glucose-acclimatized granules suspended in a mineral medium lacking glucose exhibited a distinct internal pH decrease of about 1 U within the granule, suggesting strong metabolism by the acidogenic bacteria. Molasses-acclimatized and aged granules suspended in mineral medium did not exhibit such a pH decrease, suggesting the importance of the metabolic state of these acidogens. The pH gradient did not occur in deactivated granules and was not observable in strongly buffered media (mineral medium containing 33 mM phosphate or reactor liquid). When glucose (0.5 to 5.0 mM) was added to the mineral medium, granules exhibited a convex pH profile. Glucose consumption was located exclusively in the outer 200 to 300 μm of the aggregates (mean diameter = 1.5 mm). The addition of 20 mM 2-bromoethanesulfonic acid to the mineral medium indicated that the higher pH levels in the centre of the granule appeared to be related to the activity of methanogens. It is suggested that acidogenic activity occurs predominantly in the outer 200 to 300 μm of the aggregate and methanogenic activity occurs predominantly in the center of the investigated granules
    corecore