14 research outputs found

    Blind trials of computer-assisted structure elucidation software

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the largest challenges in chemistry today remains that of efficiently mining through vast amounts of data in order to elucidate the chemical structure for an unknown compound. The elucidated candidate compound must be fully consistent with the data and any other competing candidates efficiently eliminated without doubt by using additional data if necessary. It has become increasingly necessary to incorporate an <it>in silico </it>structure generation and verification tool to facilitate this elucidation process. An effective structure elucidation software technology aims to mimic the skills of a human in interpreting the complex nature of spectral data while producing a solution within a reasonable amount of time. This type of software is known as computer-assisted structure elucidation or CASE software. A systematic trial of the ACD/Structure Elucidator CASE software was conducted over an extended period of time by analysing a set of single and double-blind trials submitted by a global audience of scientists. The purpose of the blind trials was to reduce subjective bias. Double-blind trials comprised of data where the candidate compound was unknown to both the submitting scientist and the analyst. The level of expertise of the submitting scientist ranged from novice to expert structure elucidation specialists with experience in pharmaceutical, industrial, government and academic environments.</p> <p>Results</p> <p>Beginning in 2003, and for the following nine years, the algorithms and software technology contained within ACD/Structure Elucidator have been tested against 112 data sets; many of these were unique challenges. Of these challenges 9% were double-blind trials. The results of eighteen of the single-blind trials were investigated in detail and included problems of a diverse nature with many of the specific challenges associated with algorithmic structure elucidation such as deficiency in protons, structure symmetry, a large number of heteroatoms and poor quality spectral data.</p> <p>Conclusion</p> <p>When applied to a complex set of blind trials, ACD/Structure Elucidator was shown to be a very useful tool in advancing the computer's contribution to elucidating a candidate structure from a set of spectral data (NMR and MS) for an unknown. The synergistic interaction between humans and computers can be highly beneficial in terms of less biased approaches to elucidation as well as dramatic improvements in speed and throughput. In those cases where multiple candidate structures exist, ACD/Structure Elucidator is equipped to validate the correct structure and eliminate inconsistent candidates. Full elucidation can generally be performed in less than two hours; this includes the average spectral data processing time and data input.</p

    Evidence that a STAT3 mutation causing Hyper IgE Syndrome leads to repression of transcriptional activity

    Get PDF
    We present the case of a 19-year-old female with a mild form of Autosomal Dominant Hyper IgE syndrome (HIES) associated with a loss-of-function mutation in STAT3. Within the first years of life she developed multiple, Staphylococcus aureus associated abscesses in the neck and face requiring frequent incision and drainage. Respiratory tract infections were not a feature of the clinical phenotype and a high resolution thoracic CT scan was unremarkable. Retained dentition was noted but fungal nail disease and recurrent thrush were absent. The total IgE was 970 IU/L, Lymphocyte counts and immunoglobulin levels were normal (IgG borderline 18.5 gr/L). There was suboptimal response to test immunisation with Pneumovax II vaccine. Th17 cell phenotyping revealed low levels of IL-17 expressing cells (0.3% of total CD4 T Cells numbers). Genetic analysis identified a missense mutation, N567D, in a conserved region of the linker domain of STAT3. Functional studies in HEK293 cells reveal that this mutation potently inhibits STAT3 activity when compared to the wildtype protein. This is consistent with other reported mutations in STAT3 associated with HIES. However, surprisingly, the magnitude of inhibition was similar to another STAT3 mutation (V637M) which causes a much more severe form of the disease.This article is freely available via Open Access. Click on the Publisher URL to access the full-text
    corecore