8 research outputs found

    Frictionless contact problem for hyperelastic materials with interior point optimizer

    Get PDF
    This paper presents a method to solve the mechanical problems undergoing finite deformations and the unilateral contact problems without friction for hyperelastic materials. We apply it to an industrial application: contact between a mechanical gasket and an obstacle. The main idea is to formulate the contact problem into an optimization's one, in order to use the Interior Point OPTimizer (IPOPT) to solve it. Finally, the FreeFEM software is used to compute and solve the contact problem. Our method is validated against several benchmarks and used on an industrial application example

    Contact Problems in Industrial Applications Using FreeFEM

    Get PDF
    This paper presents an algorithm and a method to solve mechanical contact problems between two bodies or more, for linear elastic and finite deformation problems. The contact problem is considered as an optimization one, more specifically as a minimization problem. The interior point method is used to solve the minimization problem. This algorithm is symmetric and the user does not need to specify anymore a slave and a master body. The algorithm was developed using FreeFEM and IPOPT software

    Frictionless contact problem for hyperelastic materials with interior point optimizer

    Get PDF
    This paper presents a method to solve the mechanical problems undergoing finite deformations and the unilateral contact problems without friction for hyperelastic materials. We apply it to an industrial application: contact between a mechanical gasket and an obstacle. The main idea is to formulate the contact problem into an optimization's one, in order to use the Interior Point OPTimizer (IPOPT) to solve it. Finally, the FreeFEM software is used to compute and solve the contact problem. Our method is validated against several benchmarks and used on an industrial application example

    Modélisation par éléments finis de problÚmes de contacts mécaniques pour des applications industrielles

    No full text
    The Airthium company uses FreeFEM software in order to study its energy storage system, and contact mechanics is a part of these studies. Therefore the principal aim of this thesis is to develop an algorithm, using FreeFEM and its tools, to solve mechanical contact problems between two bodies or more, for linear elastic or finite deformation problems. The contact problem is considered as a minimization problem of an energy, where we can take advantage of several optimization techniques, in order to converge faster to the solution. For several reasons, the interior point method is the optimization method chosen to solve the generated minimization problems. An algorithm is proposed in order to solve the frictionless contact between a hyperelastic body and a rigid foundation (obstacle). The non-penetration constraints between the body and the obstacle are described in a simple way, where there is no need to compute the normal vectors or the projection points on the obstacle, which simplifies the resolution of the contact problem. The second aim of this thesis is to develop a symmetric algorithm where the user no longer needs to specify a slave body and a master one. Thus two algorithms were developed, one based on the penalty method, and the second one uses the interior point method. In the two cases a sequence of minimization problems with linear (or affine) constraints, using a fixed point algorithm, is employed in order to consider the non-penetration for finite deformation problems, where large deformations occur. The friction is also taken into account, and the problem using Coulomb’s criterion is written into a sequence of problems with Tresca’s criterion, in order to obtain a sequence of minimization problems. A family of regularization for the Tresca’s criterion are proposed, in order to obtain sufficiently smooth problems, which in some situations can have an experimental justifications.La sociĂ©tĂ© Airthium utilise le logiciel FreeFEM afin d’étudier son systĂšme de stockage d’énergie, et la mĂ©canique du contact fait partie de ces Ă©tudes. L’objectif principal de cette thĂšse est donc de dĂ©velopper un algorithme, utilisant FreeFEM et ses outils, pour rĂ©soudre des problĂšmes de contact mĂ©canique entre deux corps ou plus, pour des problĂšmes d’élasticitĂ© linĂ©aire ou de grandes dĂ©formations. Le problĂšme de contact est considĂ©rĂ© comme un problĂšme de minimisation d’une Ă©nergie, oĂč nous pouvons tirer parti de plusieurs techniques d’optimisation, afin de converger plus rapidement vers la solution. Pour plusieurs raisons, la mĂ©thode de points intĂ©rieurs est la mĂ©thode d’optimisation choisie pour rĂ©soudre les problĂšmes de minimisation gĂ©nĂ©rĂ©s. Un algorithme est proposĂ© afin de rĂ©soudre le contact sans frottement entre un corps hyperĂ©lastique etune fondation rigide (obstacle). Les contraintes de non-pĂ©nĂ©tration entre le corps et l’obstacle sont dĂ©crites d’une maniĂšre simple, oĂč il n’est pas nĂ©cessaire de calculer les vecteurs normaux ou les points de projection sur l’obstacle, ce qui simplifie la rĂ©solution du problĂšme de contact. Le second objectif de cette thĂšse est de dĂ©velopper un algorithme symĂ©trique oĂč l’utilisateur n’a plus besoin de spĂ©cifier un corps esclave et un corps maĂźtre. Ainsi deux algorithmes ont Ă©tĂ© dĂ©veloppĂ©s, l’un basĂ© sur la mĂ©thode de pĂ©nalisation, et le second utilise la mĂ©thode de points intĂ©rieurs. Dans les deux cas, une suite de problĂšmes de minimisation avec des contraintes linĂ©aires (ou affines), utilisant un algorithme Ă  point fixe, est employĂ©e afin de considĂ©rer la non-pĂ©nĂ©tration pour les problĂšmes oĂč de grandes dĂ©formations se produisent. Le frottement est Ă©galement pris en compte, et le problĂšme utilisant le critĂšre de Coulomb est Ă©crit en une sĂ©quence de problĂšmes avec le critĂšre de Tresca, afin d’obtenir une sĂ©quence de problĂšmes de minimisation. Une famille de rĂ©gularisation pour le critĂšre de Tresca est proposĂ©e, afin d’obtenir des problĂšmes suffisamment lisses, qui dans certaines situations peuvent avoir une justification expĂ©rimentale

    Modélisation par éléments finis de problÚmes de contacts mécaniques pour des applications industrielles

    No full text
    La sociĂ©tĂ© Airthium utilise le logiciel FreeFEM afin d’étudier son systĂšme de stockage d’énergie, et la mĂ©canique du contact fait partie de ces Ă©tudes. L’objectif principal de cette thĂšse est donc de dĂ©velopper un algorithme, utilisant FreeFEM et ses outils, pour rĂ©soudre des problĂšmes de contact mĂ©canique entre deux corps ou plus, pour des problĂšmes d’élasticitĂ© linĂ©aire ou de grandes dĂ©formations. Le problĂšme de contact est considĂ©rĂ© comme un problĂšme de minimisation d’une Ă©nergie, oĂč nous pouvons tirer parti de plusieurs techniques d’optimisation, afin de converger plus rapidement vers la solution. Pour plusieurs raisons, la mĂ©thode de points intĂ©rieurs est la mĂ©thode d’optimisation choisie pour rĂ©soudre les problĂšmes de minimisation gĂ©nĂ©rĂ©s. Un algorithme est proposĂ© afin de rĂ©soudre le contact sans frottement entre un corps hyperĂ©lastique etune fondation rigide (obstacle). Les contraintes de non-pĂ©nĂ©tration entre le corps et l’obstacle sont dĂ©crites d’une maniĂšre simple, oĂč il n’est pas nĂ©cessaire de calculer les vecteurs normaux ou les points de projection sur l’obstacle, ce qui simplifie la rĂ©solution du problĂšme de contact. Le second objectif de cette thĂšse est de dĂ©velopper un algorithme symĂ©trique oĂč l’utilisateur n’a plus besoin de spĂ©cifier un corps esclave et un corps maĂźtre. Ainsi deux algorithmes ont Ă©tĂ© dĂ©veloppĂ©s, l’un basĂ© sur la mĂ©thode de pĂ©nalisation, et le second utilise la mĂ©thode de points intĂ©rieurs. Dans les deux cas, une suite de problĂšmes de minimisation avec des contraintes linĂ©aires (ou affines), utilisant un algorithme Ă  point fixe, est employĂ©e afin de considĂ©rer la non-pĂ©nĂ©tration pour les problĂšmes oĂč de grandes dĂ©formations se produisent. Le frottement est Ă©galement pris en compte, et le problĂšme utilisant le critĂšre de Coulomb est Ă©crit en une sĂ©quence de problĂšmes avec le critĂšre de Tresca, afin d’obtenir une sĂ©quence de problĂšmes de minimisation. Une famille de rĂ©gularisation pour le critĂšre de Tresca est proposĂ©e, afin d’obtenir des problĂšmes suffisamment lisses, qui dans certaines situations peuvent avoir une justification expĂ©rimentale.The Airthium company uses FreeFEM software in order to study its energy storage system, and contact mechanics is a part of these studies. Therefore the principal aim of this thesis is to develop an algorithm, using FreeFEM and its tools, to solve mechanical contact problems between two bodies or more, for linear elastic or finite deformation problems. The contact problem is considered as a minimization problem of an energy, where we can take advantage of several optimization techniques, in order to converge faster to the solution. For several reasons, the interior point method is the optimization method chosen to solve the generated minimization problems. An algorithm is proposed in order to solve the frictionless contact between a hyperelastic body and a rigid foundation (obstacle). The non-penetration constraints between the body and the obstacle are described in a simple way, where there is no need to compute the normal vectors or the projection points on the obstacle, which simplifies the resolution of the contact problem. The second aim of this thesis is to develop a symmetric algorithm where the user no longer needs to specify a slave body and a master one. Thus two algorithms were developed, one based on the penalty method, and the second one uses the interior point method. In the two cases a sequence of minimization problems with linear (or affine) constraints, using a fixed point algorithm, is employed in order to consider the non-penetration for finite deformation problems, where large deformations occur. The friction is also taken into account, and the problem using Coulomb’s criterion is written into a sequence of problems with Tresca’s criterion, in order to obtain a sequence of minimization problems. A family of regularization for the Tresca’s criterion are proposed, in order to obtain sufficiently smooth problems, which in some situations can have an experimental justifications

    Frictionless contact problem for hyperelastic materials with interior point optimizer

    Get PDF
    This paper presents a method to solve the mechanical problems undergoing finite deformations and the unilateral contact problems without friction for hyperelastic materials. We apply it to an industrial application: contact between a mechanical gasket and an obstacle. The main idea is to formulate the contact problem into an optimization's one, in order to use the Interior Point OPTimizer (IPOPT) to solve it. Finally, the FreeFEM software is used to compute and solve the contact problem. Our method is validated against several benchmarks and used on an industrial application example

    Giant Adult Mesenteric Lipoma: A Rare Cause of Chronic Abdominal Distention and Discomfort

    No full text
    Solitary or multiple lipomas are considered common tumors that can occur anywhere in the body; however, mesenteric lipoma is a rare entity that is well known to present with signs and symptoms of small bowel volvulus. Hereby, we present a case of a 54-year-old male patient with multiple comorbidities who was suffering from chronic abdominal discomfort and gradual increase of his abdominal distention over many years without seeking any medical attention. The patient was seen by a general practitioner after complaining of an inflated abdomen, as he described his condition. After several imaging studies, he was diagnosed with one of the largest mesenteric lipomas in the literature. Mesenteric lipoma should be present in the differential diagnosis of any abdominal tumor. Magnetic resonance imaging plays a major role in differentiating benign from malignant lipomas
    corecore