32 research outputs found

    Merkel cell carcinoma of skin-current controversies and recommendations

    Get PDF
    The review covers the current recommendations for Merkel cell carcinoma (MCC), with detailed discussion of many controversies. The 2010 AJCC staging system is more in-line with other skin malignancies although more complicated to use. The changes in staging system over time make comparison of studies difficult. A wide excision with margins of 2.5–3 cm is generally recommended. Even for primary </= 1 cm, there is a significant risk of nodal and distant metastases and hence sentinel node biopsy should be done if possible; otherwise adjuvant radiotherapy to the primary and nodal region should be given. Difficulties of setting up trials owing to the rarity of the disease and the mean age of the patient population result in infrequent reports of adjuvant or concurrent chemotherapy in the literature. The benefit, if any, is not great from published studies so far. However, there may be a subgroup of patients with high-risk features, e.g. node-positive and excellent performance status, for whom adjuvant or concurrent chemotherapy may be considered. Since local recurrence and metastases generally occur within 2 years of the initial diagnosis, patients should be followed more frequently in the first 2 years. However delayed recurrence can still occur in a small proportion of patients and long-term follow-up by a specialist is recommended provided that the general condition of the patient allows it. In summary, physician judgment in individual cases of MCC is advisable, to balance the risk of recurrence versus the complications of treatment

    Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome

    Get PDF
    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics

    The relationship between CAG repeat length and age of onset differs for Huntington's disease patients with juvenile onset or adult onset

    No full text
    Age of onset for Huntington's disease (HD) varies inversely with the length of the disease-causing CAG repeat expansion in the HD gene. A simple exponential regression model yielded adjusted R-squared values of 0.728 in a large set of Venezuelan kindreds and 0.642 in a North American, European, and Australian sample (the HD MAPS cohort). We present evidence that a two-segment exponential regression curve provides a significantly better fit than the simple exponential regression. A plot of natural log-transformed age of onset against CAG repeat length reveals this segmental relationship. This two-segment exponential regression on age of onset data increases the adjusted R-squared values by 0.012 in the Venezuelan kindreds and by 0.035 in the HD MAPS cohort. Although the amount of additional variance explained by the segmental regression approach is modest, the two slopes of the two-segment regression are significantly different from each other in both the Venezuelan kindreds [F(2, 439) =11.13, P =2 × 10 -5] and in the HD MAPS cohort [F(2, 688) =38.27, P = 2 × 10 -16]. In both populations, the influence of each CAG repeat on age of onset appears to be stronger in the adult-onset range of CAG repeats than in the juvenile-onset range. © 2006 The Authors Journal compilation © 2006 University College London.link_to_subscribed_fulltex
    corecore