8 research outputs found

    Ozonation of lake water and wastewater: Identification of carbonous and nitrogenous carbonyl-containing oxidation byproducts by non-target screening

    No full text
    Ozonation of drinking water and wastewater is accompanied by the formation of disinfection byproducts (DBPs) such as low molecular weight aldehydes and ketones from the reactions of ozone with dissolved organic matter (DOM). By applying a recently developed non-target workflow, 178 carbonous and nitrogenous carbonyl compounds were detected during bench-scale ozonation of two lake waters and three secondary wastewater effluent samples and full-scale ozonation of secondary treated wastewater effluent. An overlapping subset of carbonyl compounds (20%) was detected in all water types. Moreover, wastewater effluents showed a significantly higher fraction of N-containing carbonyl compounds (30%) compared to lake water (17%). All carbonyl compounds can be classified in 5 main formation trends as a function of increasing specific ozone doses. Formation trends upon ozonation and comparison of results in presence and absence of the •OH radical scavenger DMSO in combination with kinetic and mechanistic information allowed to elucidate potential carbonyl structures. A link between the detected carbonyl compounds and their precursors was established by ozonating six model compounds (phenol, 4-ethylphenol, 4-methoxyphenol, sorbic acid, 3-buten-2-ol and acetylacetone). About one third of the detected carbonous carbonyl compounds detected in real waters was also detected by ozonating model compounds. Evaluation of the non-target analysis data revealed the identity of 15 carbonyl compounds, including hydroxylated aldehydes and ketones (e.g. hydroxyacetone, confidence level (CL) = 1), unsaturated dicarbonyls (e.g. acrolein, CL = 1; 2-butene-1,4-dial, CL = 1; 4-oxobut-2-enoic acid, CL = 2) and also a nitrogen-containing carbonyl compound (2-oxo-propanamide, CL =1). Overall, this study shows the formation of versatile carbonous and nitrogenous carbonyl compounds upon ozonation involving ozone and •OH reactions. Carbonyl compounds with unknown toxicity might be formed, and it could be demonstrated that acrolein, malondialdehyde, methyl glyoxal, 2-butene-1,4-dial and 4-oxo-pentenal are degraded during biological post-treatment.ISSN:0043-1354ISSN:1879-244

    Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone

    No full text
    The application of oxidants for disinfection or micropollutant abatement during drinking water and wastewater treatment is accompanied by oxidation of matrix components such as dissolved organic matter (DOM). To improve predictions of the efficiency of oxidation processes and the formation of oxidation products, methods to determine concentrations of oxidant-reactive phenolic, olefinic or amine-type DOM moieties are critical. Here, a novel selective oxidative titration approach is presented, which is based on reaction kinetics of oxidation reactions towards certain DOM moieties. Phenolic moieties were determined by oxidative titration with ClO2 and O3 for five DOM isolates and two secondary wastewater effluent samples. The determined concentrations of phenolic moieties correlated with the electron-donating capacity (EDC) and the formation of inorganic ClO2-byproducts (HOCl, ClO2−, ClO3−). ClO2-byproduct yields from phenol and DOM isolates and changes due to the application of molecular tagging for phenols revealed a better understanding of oxidant-reactive structures within DOM. Overall, oxidative titrations with ClO2 and O3 provide a novel and promising tool to quantify oxidant-reactive moieties in complex mixtures such as DOM and can be expanded to other matrices or oxidants.ISSN:0043-1354ISSN:1879-244

    Formation of carbonyl compounds during ozonation of lake water and wastewater: Development of a non-target screening method and quantification of target compounds

    No full text
    Ozonation of natural waters is typically associated with the formation of carbonyl compounds (aldehydes, ketones and ketoacids), a main class of organic disinfection byproducts (DBPs). However, the detection of carbonyl compounds in water and wastewater is challenged by multiple difficulties inherent to their physicochemical properties. A non-target screening method involving the derivatisation of carbonyl compounds with p-toluenesulfonylhydrazine (TSH) followed by their analysis using liquid chromatography coupled to electrospray ionisation high-resolution mass spectrometry (LC-ESI-HRMS) and an advanced non-target screening and data processing workflow was developed. The workflow was applied to investigate the formation of carbonyl compounds during ozonation of different water types including lake water, aqueous solutions containing Suwannee River Fulvic acid (SRFA), and wastewater. A higher sensitivity for most target carbonyl compounds was achieved compared to previous derivatisation methods. Moreover, the method allowed the identification of known and unknown carbonyl compounds. 8 out of 17 target carbonyl compounds were consistently detected above limits of quantification (LOQs) in most ozonated samples. Generally, the concentrations of the 8 detected target compounds decreased in the order: formaldehyde > acetaldehyde > glyoxylic acid > pyruvic acid > glutaraldehyde > 2,3-butanedione > glyoxal > 1-acetyl-1-cyclohexene. The DOC concentration-normalised formation of carbonyl compounds during ozonation was higher in wastewater and SRFA-containing water than in lake water. The specific ozone doses and the type of the dissolved organic matter (DOM) played a predominant role for the extent of formation of carbonyl compounds. Five formation trends were distinguished for different carbonyl compounds. Some compounds were produced continuously upon ozonation even at high ozone doses, while others reached a maximum concentration at a certain ozone dose above which they decreased. Concentrations of target and peak areas of non-target carbonyl compounds during full-scale ozonation at a wastewater treatment plant showed an increase as a function of the specific ozone dose (sum of 8 target compounds ∼ 280 µg/L at 1 mgO3/mgC), followed by a significant decrease after biological sand filtration (> 64–94% abatement for the different compounds). This highlights the biodegradability of target and non-target carbonyl compounds and the importance of biological post-treatment.ISSN:0043-1354ISSN:1879-244

    Hydrogen Peroxide Formation during Ozonation of Olefins and Phenol: Mechanistic Insights from Oxygen Isotope Signatures

    No full text
    Mitigation of undesired byproducts from ozonation of dissolved organic matter (DOM) such as aldehydes and ketones is currently hampered by limited knowledge of their precursors and formation pathways. Here, the stable oxygen isotope composition of H2O2 formed simultaneously with these byproducts was studied to determine if it can reveal this missing information. A newly developed procedure, which quantitatively transforms H2O2 to O2 for subsequent 18O/16O ratio analysis, was used to determine the δ18O of H2O2 generated from ozonated model compounds (olefins and phenol, pH 3–8). A constant enrichment of 18O in H2O2 with a δ18O value of ∼59‰ implies that 16O–16O bonds are cleaved preferentially in the intermediate Criegee ozonide, which is commonly formed from olefins. H2O2 from the ozonation of acrylic acid and phenol at pH 7 resulted in lower 18O enrichment (δ18O = 47–49‰). For acrylic acid, enhancement of one of the two pathways followed by a carbonyl–H2O2 equilibrium was responsible for the smaller δ18O of H2O2. During phenol ozonation at pH 7, various competing reactions leading to H2O2 via an intermediate ozone adduct are hypothesized to cause lower δ18O in H2O2. These insights provide a first step toward supporting pH-dependent H2O2 precursor elucidation in DOM.ISSN:0013-936XISSN:1520-585

    Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer

    No full text
    Ozonation of secondary wastewater treatment plant effluent for the abatement of organic micropollutants requires an accurate process control, which can be based on monitoring ozone-induced changes in dissolved organic matter (DOM). This study presents a novel automated analytical system for monitoring changes in the electron donating capacity (EDC) and UV absorbance of DOM during ozonation. In a first step, a quantitative photometric EDC assay was developed based on electron-transfer reactions from phenolic moieties in DOM to an added chemical oxidant, the radical cation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS·+). The assay is highly sensitive (limit of quantification ∼0.5 mgDOC·L−1) and EDC values of model DOM isolates determined by this assay were in good agreement with values determined previously by mediated electrochemical oxidation (slope = 1.01 ± 0.07, R2 = 0.98). In a second step, the photometric EDC measurement method was transferred onto an automated fluidic system coupled to a photometer (EDC analyzer). The EDC analyzer was then used to monitor changes in EDC and UV absorbance of secondary wastewater effluent treated with ozone. While both parameters exhibited a dose-dependent decrease, a more pronounced decrease in EDC as compared to UV absorbance was observed at specific ozone doses up to 0.4 mgO3·gDOC−1. The concentration of 17α-ethinylestradiol, a phenolic micropollutant with a high ozone reactivity, decreased proportionally to the EDC decrease. In contrast, abatement of less ozone-reactive micropollutants and bromate formation started only after a pronounced initial decrease in EDC. The on-line EDC analyzer presented herein will enable a comprehensive assessment of the combination of EDC and UV absorbance as control parameters for full-scale ozonation.ISSN:0043-1354ISSN:1879-244

    Photochemical Production of Carbon Monoxide from Dissolved Organic Matter: Role of Lignin Methoxyarene Functional Groups

    No full text
    Carbon monoxide (CO) is the second most abundant identified product of dissolved organic matter (DOM) photodegradation after CO2, but its formation mechanism remains unknown. Previous work showed that aqueous photodegradation of methoxy-substituted aromatics (ArOCH3) produces CO considerably more efficiently than aromatic carbonyls. Following on this precedent, we propose that the methoxy aromatic groups of lignin act as the C source for the photochemical formation of CO from terrestrial DOM via a two-step pathway: formal hydrolytic demethylation to methanol and methanol oxidation to CO. To test the reasonableness of this mechanism, we investigated the photochemistry of eight lignin model compounds. We first observed that initial CO production rates are positively correlated with initial substrate degradation rates only for models containing at least one ArOCH3 group, regardless of other structural features. We then confirmed that all ArOCH3-containing substrates undergo formal hydrolytic demethylation by detecting methanol and the corresponding phenolic transformation products. Finally, we showed that hydroxyl radicals, likely oxidants to initiate methanol oxidation to CO, form during irradiation of all models. This work proposes an explicit mechanism linking ubiquitous, abundant, and easily quantifiable DOM functionalities to CO photoproduction. Our results further hint that methanol may be an abundant (yet overlooked) DOM photoproduct and a likely precursor of formaldehyde, formic acid, and CO2 and that lignin photodegradation may represent a source of hydroxyl radicals.ISSN:0013-936XISSN:1520-585

    Bioactive, elastic, and biodegradable emulsion electrospun degrapol tube delivering PDGF-BB for tendon rupture repair

    Full text link
    Healing of tendon ruptures represents a major challenge in musculoskeletal injuries and combinations of biomaterials with biological factors are suggested as viable option for improved healing. The standard approach of repair by conventional suture leads to incomplete healing or rerupture. Here, a new elastic type of DegraPol® (DP), a polyester urethane, is explored as a delivery device for platelet-derived growth factor-BB (PDGF-BB) to promote tendon healing. Using emulsion electrospinning as an easy method for incorporation of biomolecules within polymers, DegraPol® supports loading and release of PDGF-BB. Morphological, mechanical and delivery device properties of the bioactive DP scaffolds, as well as differences arising due to different electrospinning parameters are studied. Emulsion electrospun DP scaffolds result in thinner fibers than pure DP scaffolds and experience decreased strain at break [%], but high enough for successful surgeon handling. PDGF-BB is released in a sustained manner from emulsion electrospun DP, but not completely, with still large amount of it being inside the polymeric fibers after 30 d. In vitro studies show that the bioactive scaffolds promote tenocyte proliferation in serum free and serum(+) conditions, demonstrating the potential of this surgeon-friendly bioactive delivery device to be used for tendon repair
    corecore